

Page 1 of 243

TEST REPORT

TOR Generator

Connection and parallel operation of Type A power generation systems and small-scale generation systems

OVE-Guideline R 25

Test requirements for generator units to be connected to and operated in parallel with low-voltage distribution networks

 Report Number.......
 6134610.50

 Date of issue
 2023-01-05

 Total number of pages......
 243 pages

Testing Laboratory DEKRA Testing and Certification (Suzhou) Co., Ltd.

P.R. China

Applicant's name : AKKU SYS Akkumu|ator - und Batterietechnik Nord GmbH

Address: Verbindungsweg 23, 25469, Halstenbek, Germany

Test specification:

Standard.....: TOR Erzeuger Type A Version 1.2:2022-04-11

OVE-Richtlinie R 25:2020-03-01

Test procedure.....: Type test

Non-standard test method.....: N/A

Test Report Form No. TOR Erzeuger_V1.1

Test Report Form(s) Originator....: DEKRA Testing and Certification (Suzhou) Co., Ltd.

Master TRF: Dated 2022-05

Test item description: Hybrid Inverter

Trade Mark:

a-tronix

Manufacturer: AKKU SYS Akkumu|ator - und Batterietechnik Nord GmbH

Verbindungsweg 23, 25469, Halstenbek, Germany

Model/Type reference: Hybridpower 4kW 3ph, Hybridpower 5kW 3ph,

Hybridpower 6kW 3ph, Hybridpower 8kW 3ph, Hybridpower 10kW 3PH, Hybridpower 12kW 3ph

Page 2 of 243 Report No.: 6134610.50

Ratings : Operating temperature range: - 30°C to + 60°C

Protective class: I

Ingress protection rating: IP65

Power factor range (adjustable): 0.8 leading...0.8 lagging

Overvoltage category: III(Mains), II(DC)

Operating altitude: 3000m Inverter topology: Non-isolated

Hybridpower 4kW 3ph:

PV input: Max 1000 Vdc, MPPT voltage range: 150-850 Vdc, Max

13A/13 A, Isc PV: 18 A/18 A

Battery: Voltage Range 140-750 Vdc, Max charge and discharge

current: 25 A, Battery type: Li-Ion

AC output: 3/N/PE 230/400 Vac , 50 Hz, Rated Active Power 4000

W, Max. Apparent Power 4400 VA, Max 6.7 A

Hybridpower 5kW 3ph:

PV input: Max 1000 Vdc, MPPT voltage range: 150-850 Vdc, Max

13A/13 A, Isc PV: 18 A/18 A

Battery: Voltage Range 140-750 Vdc, Max charge and discharge

current: 25 A, Battery type: Li-Ion

AC output: 3/N/PE 230/400 Vac , 50 Hz, Rated Active Power 5000

W, Max. Apparent Power 5500 VA, Max 8.3 A

Hybridpower 6kW 3ph:

PV input: Max 1000 Vdc, MPPT voltage range: 200-850 Vdc, Max

13A/13 A, Isc PV: 18 A/18 A

Battery: Voltage Range 140-750 Vdc, Max charge and discharge

current: 25 A, Battery type: Li-Ion

AC output: 3/N/PE 230/400 Vac , 50 Hz, Rated Active Power 6000

W, Max. Apparent Power 6600 VA, Max 10.0 A

Hybridpower 8kW 3ph:

PV input: Max 1000 Vdc, MPPT voltage range: 200-850 Vdc, Max

13A/13 A, Isc PV: 18 A/18 A

Battery: Voltage Range 140-750 Vdc, Max charge and discharge

current: 25 A, Battery type: Li-Ion

AC output: 3/N/PE 230/400 Vac , 50 Hz, Rated Active Power 8000

W, Max. Apparent Power 8800 VA, Max 13.3 A

Hybridpower 10kW 3ph:

PV input: Max 1000 Vdc, MPPT voltage range: 200-850 Vdc, Max

13A/13 A, Isc PV: 18 A/18 A

Battery: Voltage Range 140-750 Vdc, Max charge and discharge

current: 25 A, Battery type: Li-Ion

AC output: 3/N/PE 230/400 Vac , 50 Hz, Rated Active Power

10000 W, Max. Apparent Power 11000 VA, Max 16.5 A

Hybridpower 12kW 3ph:

PV input: Max 1000 Vdc, MPPT voltage range: 200-850 Vdc, Max

13A/13 A, Isc PV: 18 A/18 A

Battery: Voltage Range 140-750 Vdc, Max charge and discharge

current: 25 A, Battery type: Li-Ion

AC output: 3/N/PE 230/400 Vac , 50 Hz, Rated Active Power 12000 W, Max. Apparent Power 13200 VA, Max 20.0 A

Page 3 of 243 Report No.: 6134610.50

Res	ponsible Testing Laboratory (as applical	ble), testing procedure and	testing location(s):			
\boxtimes	Testing Laboratory:	DEKRA Testing and Certification (Suzhou) Co., Ltd.				
Test	ing location/ address:	No.99, Hongye Road, Suzh Jiangsu, P.R. China	ou Industrial Park, Suzhou,			
Test	ed by (name, function, signature):	Janey Qian (ENG)	Joney Vian Jasarlen			
Approved by (name, function, signature):		Jason Guo (REW)	Jasarles			
	I	T				
<u> </u>	Testing procedure: CTF Stage 1:					
Test	ing location/ address::					
Test	ed by (name, function, signature):					
Арр	roved by (name, function, signature):					
	Testing procedure: CTF Stage 2:					
	ing location/ address:					
Test	ed by (name + signature):					
Witr	nessed by (name, function, signature).:					
Арр	roved by (name, function, signature):					
	Testing procedure: CTF Stage 3:					
	Testing procedure: CTF Stage 4:					
Test	ing location/ address:					
Test	ed by (name, function, signature):					
Witnessed by (name, function, signature).:						
Approved by (name, function, signature):						
Sup	ervised by (name, function, signature):					

Page 4 of 243 Report No.: 6134610.50

List of Attachments (including a total number of Appendix: Pictures (13 pages)	pages in each attachment):
Summary of testing:	
Tests performed (name of test and test clause): Report 6142730.50A Full applicable clauses test according to standards: TOR Erzeuger Type A Version 1.2:2022-04-11 OVE-Richtlinie R 25:2020-03-01	Testing location: DEKRA Testing and Certification (Suzhou) Co., Ltd. No.99, Hongye Road, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China
Report 6134610.50A No testing	

Page 5 of 243 Report No.: 6134610.50

Copy of marking plate:

Rating label

Page 6 of 243 Report No.: 6134610.50

Page 7 of 243 Report No.: 6134610.50

Remark:

According to customer's requirement and Austria low-voltage distribution networks code, these models were only evaluated under the grid frequency of 50 Hz.

Page 8 of 243 Report No.: 6134610.50

Test item particulars:	
Class of equipment:	Class I
Connection to the mains:	Permanent connection
IP protection class:	IP65
Possible test case verdicts:	
- test case does not apply to the test object	N/A
- test object does meet the requirement	P (Pass)
- test object does not meet the requirement	F (Fail)
- this clause is information reference for installation:	Info.
Testing	
Date of receipt of test item(s)	2022-08-03 (samples provided by applicant)
Dates tests performed	2022-08-03 to 2022-11-23
Canaral ramarka	

Octiciai iciliaiks.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, it is not necessary to account the uncertainty associated with the measurement result.

This report is only for reference and is not used for legal proof function in China market.

The information provided by the customer in this report may affect the validity of the results, the test lab is not responsible for it.

"(See Enclosure #)" refers to additional information appended to the report.

"(See appended table)" refers to a table appended to the report.

In case of doubt the German version standard will be valid.

Throughout this report a \square comma / \boxtimes point is used as the decimal separator.

The following suffixes are used for variables in tables and figures:

- "P_N" for the nominal active power.
 - $P_n = U_n \ x \ I_n \ x \cos \phi_n$ (single-Phase); $P_n = \sqrt{3} \ U_n \ x \ I_n \ x \cos \phi_n$ (three-Phase).
- " E0.2" for gliding average values over 200 milliseconds.
- "_E30" for gliding average values over 30 seconds.
- "_E60" for gliding average values over 60 seconds.
- "_E600" for gliding average values over 10 minutes.

Acronyms:

EZE (Erzeugungseinheit): Power Generating Unit - PGU EZA (Erzeugungsanlage): Power Generating System - PGS

Name and address of factory (ies)

Ningbo Sunways Technologies Co., Ltd.

No. 1, Second Road, Green Industrial Zone, Chongshou Town 315334 Cixi, Ningbo, Zhejiang, P.R. China

Page 9 of 243 Report No.: 6134610.50

General product information:

These devices are Hybrid inverters (bi-directional converter) designed to work with PV panels up to 1000Vd.c. and Li-ion batteries up to 750Vd.c.. It is responsible for converting the direct current generated by photovoltaic panels and batteries into three-phase 400V, 50 Hz alternative current for feeding into the electrical power distribution grid or the backup load. The Hybrid inverter can operate when it is connected to the electrical power distribution line and as a stand-alone unit or in case of AC grid disruption (standalone mode only for equipment with Back-up output port).

Block Diagram: Sunways Meter Communication R 145 Main Switch/Breaker PV1+ L1 PV Array PV1-ON-GRID CT-2 L3 Grid CT-3 PV2+ Array PV2-Switch/Breaker N-BAR STH Hybrid Inverter •••• E-BAR RCD The additiona grounding hole Battery Breake L2 RJ45-BMS Communication RCD L3 N **(a)**

Model difference:

Hybridpower 12kW 3ph: basic model.

Hybridpower 4kW 3ph, Hybridpower 5kW 3ph, Hybridpower 6kW 3ph, Hybridpower 8kW 3ph, Hybridpower 10kW 3ph same family product,

technical similar as basic model, except for model name and some electrical parameters about current and power.

The product was tested on:

Firmware/software version: V1.05

Hardware version: V1.00

Unless otherwise specified, all the tests were performed on model Hybridpower 12kW 3ph and also applicable for all other models stated in this report.

Amendment 1 report 6134610.50A:

The report 6134610.50A was based on the report 6142730.50A issued by DEKRA Testing and Certification (Suzhou) Co., Ltd., issued on 2021-12-22. It was issued due to below modifications:

- 1. Applicant's and Manufacturer's name was changed from Ningbo Sunways Technologies Co., Ltd. to AKKU SYS Akkumu|ator und Batterietechnik Nord GmbH, updated address accordingly;
- 2. Trade name was changed from Sunways to AKKU, updated marking;
- 3. Change the model name see page 2;
- 4. Update the photos of the sample enclosure with the new manufacturer's logo.

After technical review, no tests were considered necessary; see the "summary of testing".

Def	ault country settings of Austria:							
Def	ault settings for the grid decoupling protecti	on:						
Par	rameter	Default sett	ing va	lue		Defaul	t setting	s time
Ove	ervoltage protection U>> (stage 2)	1.15 U _n (264.5V) 0.1 s						
Ove	ervoltage protection U> (stage 1) *	1.11 U _n (25	5.3V)			0.1 s		
Und	dervoltage U< (stage 1)	0.80 U _n (18	4.0V)			1.5 s		
Und	dervoltage U<< (stage 2)	0.25 U _n (57	.5V)			0.5 s		
Ove	er frequency f>	51.5 Hz				0.1 s		
-	der frequency f<	47.5 Hz				0.1 s		
	s of mains according EN 62116 (LoM)	2 s						
-	ault settings for the reconnection conditions	: :						
-	nnection setting value for overvoltage	1.09 U _n (25	0.7V)					
	nnection setting value or undervoltage	0.85 U _n (19						
	nnection setting value for overfrequency	50.1 Hz						
-	nnection setting value for underfrequency	47.5 Hz						
	iting time for automatic connection	60 s						
	iting time for reconnection after the decoupling tection has been tripped	300 s						
Act	ive power gradient after tripped	10% P _{max} /	minute	Э				
Rea	active power control:							
a)	Fixed displacement factor cos φ	$\cos \varphi = 1$						
b)	Displacement factor / active power characteristic curve cos φ (P)	Set point P/Pn	P ₁			P ₂ 50% P		00% P _{max}
	,	cos φ Set point	<u> 1</u> U₁		U ₂	1	U₃	.9 _{underexcited}
c)	Reactive power voltage characteristic curve	U/U _n	0.9		0.96		1.05	1.08
	Q (U)	Q/P _{max} cos φ	0.43 cos φ		0 1		<u>0</u> 1	-0.436 -cos φ _{min}
	Q(U) control PT1 behaviour time constant	5 s (setting testing)				ntlinie F		use 5.3.10
d)	Fixed reactive power Q	Q = 0						
Act	tive power reduction at overfrequency (LFSM	l-O):						
Sta	rt of power reduction from frequency	50.2 Hz						
End	d of power reduction at frequency	51.5 Hz						
Dro	ор	5% (corres	oonds	to 4	0% Рм	ı / Hz)		
P(L	J) control:							
	P(U) control Interpolation point (start voltage / power)		Set point U1 U2 U/Un 1.10 1.12 Power 100%Pn 0%Pn					
P(L	J) control PT1 behaviour time constant	5 s						
Sta	ndard settings for the FRT capability:	1						
FR ⁻	T voltage dips interpolation point (voltage / e)	Set point U/Un Time (ms)	U₁ 0.1:		U ₂ 0.30 350	U ₃ 0.50 900	U ₄ 0.75	

Zero current lock-in voltage during voltage dips	< 0.8 U _n
--	----------------------

Remark:

The stated voltages are 'true r.m.s.' or fundamental component -values.

* Over-voltage – stage 1: 10-min-value corresponding to ÖNORM EN 50160.

The calculation of the 10 min value shall comply with the 10 min aggregation of EN 61000-4-30, class S.

The function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. In deviation from EN 61000-4-30, a moving window shall be used. The calculation of a new 10-min value at least every 3 s is sufficient, which is then to be compared with the trip Page 12 of 243

		<u> </u>		
	TOR Erzeuger			
Clause	Requirement - Test	Result - Remark	Verdict	
4	GRID CONNECTION PROCEDURE AND RELEVANT DOCUMENTS			
4.1	Determination of the maximum capacity of the power generation system			
4.2	Grid connection application		-	
4.3	Connection assessment and concept		-	
4.4	Grid connection contract		-	
5	GRID BEHAVIOUR OF THE POWER GENERATION SYS	TEM	Р	
5.1	Frequency stability requirements		Р	
	Power generation systems must meet the following requirements for frequency stability:		Р	
5.1.1	Frequency ranges		Р	
	a) power generation systems must be able to maintain grid connection and operation within the frequency ranges and time periods shown in Table 1;	(See appended table)	Р	
	Frequency range Minimum period 47.5 Hz – 48.5 Hz 60 minutes			
	48.5 Hz – 49.0 Hz 90 minutes			
	49.0 Hz — 51.0 Hz unlimited			
	51.0 Hz – 51.5 Hz 30 minutes			
	Table 1: Minimum periods in which a power generation system must be able to operate under deviations from the nominal frequency without			
	disconnection from the grid.			
	b) the relevant grid operator can agree in coordination with the relevant TSO and grid user upon wider frequency ranges, longer minimum operating periods or specific requirements regarding combined frequency and voltage deviations in order to ensure the best possible use of the technical capacities of a power generation system, if this is necessary to		P	
	c) the grid user may not, without good reason, refuse to give consent for the use of broader frequency ranges or longer minimum operating periods subject to the economic and technical feasibility.		Р	
	Exceptions are only permitted in agreement with the grid operator. The frequency with which a power generation unit is to be disconnected from the grid must be agreed upon with the grid operator.		Р	
5.1.2	Frequency gradients		Р	
	Power generation systems must be able to maintain the connection to the grid and the operation at frequency gradients up to 2 Hz/s, unless the disconnection from the grid was caused by a triggering of the grid failure protection (generator protection or grid decoupling protection) as a result of the frequency gradient.	(See appended table)	Р	

	ТО	R Erzeuger		
Clause	Requirement - Test		Result - Remark	Verdict
	A frequency gradient triggered protecti generally not provided in chapter 6.3 "I and grid decoupling protection". Under circumstances, the relevant grid opera a frequency gradient triggered protection provided.	Protection devices certain tor can require that		Р
	The parametrisation of the grid failure parametrisation or grid decoupling the frequency gradient is determined be operator in coordination with the relevant	g protection) with y the relevant grid		Р
5.1.3	Active power reduction with overfreque	ency (LFSM-O)		Р
	The following provisions apply to the lir sensitive mode – overfrequency (LFSN synchronous power generation system and grid connection point in the low-vo LFSM-O must be activated by default. systems with a grid connection point in network, which are technologically not regulations for the limited frequency se overfrequency (LFSM-O), must be able from the grid in the frequency range be 51.5 Hz. The setting value of the trip frequenciators must publish this scaling in a	M-O): For non- is with converters Itage network, Power generation in the low-voltage compliant with the ensitive mode at the to disconnect etween 50.2 Hz and equency is (scaling). Grid	(See appended table)	Р
	Figure 1: Ability of power generation systems s_2 [%] = $100 \cdot \frac{ \Delta f - \Delta f_1 }{f_n} \cdot \frac{P_{req}}{ \Delta P }$ Figure 1: Ability of power generation systems for frequency active power in LFSM-O mode P_{ref} is the reference active power that corresponding to the power systems and the actual active power time t when the frequency threshold value of non-synchronous power generation system at the time $t+1$ against t ; f_n is the notation of the p_n in the p_n system at the time $t+1$ against t ; f_n is the frequency deviation t in Hz , Δf_1 is the frequency of the t for t in t and t is the frequency of the t for t and t in t and t and t in t and t in t and t an	esponds to the chronous power output at the is reached in the case ems; ΔP is the ower generation ominal frequency (50 in the grid at the on in the grid at the		P
	time t in Hz and s_2 is the statics of the LFS. At overfrequency where Δf is above Δf generation system must reduce the acceptance of the start of LFSM-O mode must be free 50.2 Hz to 50.5 Hz. The statics s_2 for the must be freely adjustable from 2% to 1 otherwise specified by the grid operator mode, a frequency threshold of 50.2 Hz 5% must be used - see figure 1.	f ₁ , the power tive power output ency threshold for ely adjustable from ne LFSM-O mode 2%. Unless or for the LFSM-O		Р

Page 14 of 243 Report No.: 6134610.50

	1 ago 14 01 240	report to:: e	
	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	The resolution of the frequency measurement must be ≤ 10 mHz. The tolerance band about the stationary end value of the control variable in LFSM-O mode is ± 5% of the nominal power of the power generation system.		Р
	The power generation system must be able to activate the frequency-dependent adjustment of the active power output after an initial time delay (T _{delay}) that is as short as possible. If this time delay is more than two seconds, the grid user must justify the delay by presenting technical evidence to the relevant TSO. Any parametrisable		Р
	artificial delay time must be deactivated or set to 0 s. The power generation system must be able to continue operating at this minimum control value when the minimum capacity for regular operation is reached.		Р
	The power generation system must be able to operate stably in LFSM-O mode. If LFSM-O mode is activated, the LFSM-O setpoint has priority over all other setpoints for active power output.		Р
	For synchronous power generation systems (including pumped storage power plants), the control times (response and settling times) in LFSM-O mode must be coordinated with the grid operator subject to the technical capacities of the power generation system.	The grid-connected PV inverters under test were not synchronous power generation systems.	N/A
	For non-synchronous power generation systems, the following control times (response and settling times) are recommended in LFSM-O mode: $T_A \le 2$ s for an active power reduction of 50 % of P_{max} $T_E \le 20$ s $T_{delay} << T_A$		P
	Figure 2: Example of response and settling times of non-synchronous power generation systems in LFSM-O mode T _A is the response time between the erratic occurrence of a control deviation and the first time the tolerance band about the stationary end value of the control variable is reached in s; the response time also includes the time when the control deviation is recognised; TE is the settling time in s that is required until the control variable remains permanently within the tolerance band about the stationary end value, T _{delay} is the delay time in s.		
5.1.4	Active power output according to the setpoint		Р
	The power generation system must be able to deliver a constant active power output according to its setpoint regardless of frequency changes, unless the change in power output is due to one of the modes described in chapter 5.1 "Frequency stability requirements" or due to insufficiently available primary energy.		Р
5.1.5	Reduction in the maximum active power output with decreasing frequency		Р

Page 15 of 243 Report No.: 6134610.50

	TOP Frances		134010.50
	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	For synchronous power generation systems, the permissible reduction in the maximum active power output ΔP/P _{max} with decreasing frequency is: – up to 49.5 Hz: 0%; – below 49.5 Hz: Reduction by 10% of the maximum capacity at 50 Hz per Hz frequency drop.	The grid-connected PV inverters under test were not synchronous power generation systems.	N/A
	For non-synchronous power generation systems, the permissible reduction in the maximum active power output ΔP/P _{max} with decreasing frequency is: – up to 49.0 Hz: 0%; – below 49.0 Hz: Reduction by 2% of the maximum capacity at 50 Hz per Hz frequency drop.		P
	Technology-dependent deviations from the required values must be agreed upon with the relevant grid operator in the grid connection contract.		P
5.1.6	Active power increase with underfrequency (LFSM-U)		N/A
0.1.0	There are no requirements for power generation systems in this regard.		N/A
5.1.7	Frequency sensitive mode (FSM)		N/A
	There are no requirements for power generation systems in this regard.		N/A
5.1.8	Provision of synthetic oscillating weight		N/A
	There are no requirements for power generation systems in this regard.		N/A
5.2	Requirements regarding robustness and dynamic grid	support	Р
5.2.1	FRT (fault ride through) capability of power generation systems		Р
	The requirements for FRT capability apply to both symmetrical and asymmetrical faults in the grid.		Р
	Power generation systems must be able to maintain a connection to the grid and stable operation if there are faults in the power grid in the form of faults that can be controlled according to the concept (in the transmission or distribution system).		P
	This capability corresponds to a voltage-time profile at the grid connection point, which is established for fault conditions. The voltage-time profile shows the lower limit of the actual course of the line-to-line voltages at the grid voltage level during a fault as a function of the time before, during and after the fault.		Р

	TOR Erzeuger	<u> </u>	
Clause	Requirement - Test	Result - Remark	Verdict
	For synchronous power generation systems with a grid connection point in the low-voltage network, the voltage-time profile is a reference value. They should be able to maintain connection to the grid and stable operation during a fault in accordance with the manufacturer's instructions.	The grid-connected PV inverters under test were not synchronous power generation systems	N/A
	Power generation systems must be designed to run through several consecutive faults. If the thermal design limits are exceeded due to several consecutive faults, the power generation system may disconnect from the grid.		Р
	The protection systems and settings for internal electrical faults must not endanger the FRT capability; without prejudice to this, the undervoltage protection (either FRT capability or specified minimum voltage) must be determined by the grid user as broadly as possible subject to the capacities of the power generation system, provided the relevant grid operator does not prescribe any narrower limits for the settings in accordance with chapter 6.3 "Protection systems and settings". The grid user must justify the settings according to this principle.		P
	The following diagrams show the lower limit value of a voltage-time profile of the voltage U at the grid connection point on the y-axis as the ratio of its actual value to its reference value 1 p.u. before, during and after the fault. The time t after the start of the fault is plotted in seconds on the x-axis.		Р
	The following FRT profile applies to synchronous power generation systems: 12	The grid-connected PV inverters under test were not synchronous power generation systems.	N/A
	The following FRT profile applies to non-synchronous		Р

	TOR Erzeuger	Кероп но о	
Clause	Requirement - Test	Result - Remark	Verdict
Oldudo	Figure 5: FRT profile of non-synchronous power generation systems with grid connection point at LV level	The grid-connected PV inverters under test were connected to LV distribution network.	P
	Figure 6: FRT profile of non-synchronous power generation systems with grid connection point at MV level	The grid-connected PV inverters under test were connected to LV distribution network.	N/A
5.2.2	Active and reactive current feed during and after grid faults		Р
5.2.2.1	Behaviour in the event of a fault		Р
	In the event of faults that require FRT capability, non-synchronous power generation systems with a grid connection point in the low-voltage network must be able to withstand voltage dips with a residual voltage U < 0.8 Un, without disconnecting from the grid and without electricity being fed into the grid of the grid operator (limited dynamic grid support)		P
	In coordination with the relevant grid operator and its express consent, non-synchronous power generation systems with a grid connection point in the low-voltage network, which are able to maintain a defined operating point in the event of faults that require FRT capability, can maintain the active and reactive current feed with deviation from the above specification or the active and reactive power feed with the highest possible accuracy.		P
	In the event of faults that require FRT capability, non- synchronous power generation systems connected to the medium-voltage network must be able to support the grid voltage by feeding in a reactive current. The reactive current feed must also be possible in the event of asymmetrical faults.	The grid-connected PV inverters under test were connected to LV distribution network.	N/A
	The relevant grid operator shall specify in the grid connection contract how reactive power must be fed in or whether no power should be fed into the grid of the grid operator (limited dynamic grid support).	It's depended on relevant grid operator.	Info.

	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	 If the relevant grid operator requires dynamic reactive current support, the following requirements must be observed: Non-synchronous power generation systems connected to the medium-voltage network must provide dynamic reactive current support in the event of symmetrical and asymmetrical faults under the following conditions: If there is an erratic change in voltage or if a voltage at the grid connection point is > 1.1 p.u. or < 0.9 p.u., non-synchronous power generation systems must support the voltage by increasing or decreasing an additional reactive current Δi_{B1.2} in the positive and negative sequences; The additional reactive current Δi_{B1.2} is proportional to the voltage deviation Δu_{1.2} and a gain factor k, which is specified by the relevant grid operator subject to the essential impedances between the power generation unit(s) of the non-synchronous power generation unit(s) of the non-synchronous power generation system and the grid connection point. Unless otherwise specified by the relevant grid operator for the gain factor k, a value k = 2 should be selected. The consumer counting arrow system is used for the following formula. Δi_{B1} = k * Δu₁ Δi_{B2} = k * Δu₂ Δi_{B1}additional reactive current in the negative sequence Δu₁ change in the positive sequence voltage k gain factor (2 ≤ k ≤ 6), adjustable in steps of 0.5 (except power generation systems with directly coupled asynchronous generators in the event of asymmetrical faults); After the fault has ended, the transition from dynamic reactive current support to static voltage stability takes place. The transition should be continuous and not abrupt. 	The grid-connected PV inverters under test were connected to LV distribution network.	N/A
	Non-synchronous power generation systems must be able to feed in a reactive current of at least the level of the rated current. Continuous dynamic grid support is also permissible as part of the aforementioned requirements, which is permanent and parallel to the stationary voltage stability regardless of the fulfilment of the criteria for the start and end of the fault.	The grid-connected PV inverters under test were connected to LV distribution network.	N/A
5.2.2.2	Resumption of power output after fault finding		Р
	The following applies to non-synchronous power generation systems with a grid connection point in the low-voltage network: If the grid voltage is within the permissible voltage range after fault finding and the active current has been reduced during the grid fault, power generation systems must be able to increase the active current to the pre-fault value as quickly as technically possible. The response time may be a maximum of 1 s; for rotating machines a maximum of 6 s.		Р

Page 19 of 243 Report No.: 6134610.50

		Fage 19 01 243		134010.30
		TOR Erzeuger		
Clause	Requirement - Test		Result - Remark	Verdict
	power output to the pre-fau technically possible.	is within the permissible ding and the active power uring the grid fault, power e able to increase the active It value as quickly as		P
	The reactive power provision system follows the set procuprovision in terms of time re	edure for reactive power		Р
5.3	Static voltage range requi	rements		Р
5.3.1	Voltage ranges			Р
	Without prejudice to the FR generation system must be the grid and operation durin following tables and within tin same tables, which are s to the reference value 1 p.u.	able to maintain connection to og the periods specified in the he grid voltage ranges listed pecified as voltage in relation		Р
	Voltage range	Minimum period		
	0.85 p.u. – 0.9 p.u.	60 minutes		
	0.9 p.u. – 1.1 p.u. 1.1 p.u. – 1.12 p.u.	unlimited 10 minutes		
	system with a grid connecti	n which a power generation on point at the LV level must disconnection from the grid if eference value 1 p.u.	The grid-connected PV	N/A
	Voltage range	Minimum period	inverters under test were	IN/A
	system with a grid connecti	180 seconds unlimited n which a power generation on point at the MV level must disconnection from the grid if eference value 1 p.u.	connected to LV distribution network.	
5.3.2		generation system from the		Р
		onnection point reaches vant grid operator in nt TSO, as described in		P
5.3.3	Reactive power capacity			Р
		the grid connection point at ents for the reactive power	The grid-connected PV inverters under test were connected to LV distribution network.	Р
	The power generation system operated in the required real	em must be able to be		Р

	1 age 20 01 2+3	Report No.: 0	10-1010.0	
TOR Erzeuger				
Clause	Requirement - Test	Result - Remark	Verdict	
	The reactive power of the power generation system must be able to follow a procedure for the reactive power provision specified by the relevant grid operator in accordance with chapter 5.3.4 within the required reactive power ranges.		Р	
	The generator reference-arrow system (GRAS) is used for the following graphics.		Р	
5.3.3.1	Reactive power capacity at nominal apparent power or maximum capacity		N/A	
	U/Un 1,075 1,050 1,095 1,095 0,975 0,950 0,925 0,960 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 Figure 7: Reactive power range of power generation systems with S _r ≤3.68 kVA (without converter ¹⁶) at nominal apparent power	Single-phase inverter with S _r > 3.68 kVA.	N/A	
	U/Un 1,075 1,050 1,075 1,050 0,436 1,005 0,975 0,950 0,950 0,950 0,975 0,950 0,960 0,975 0,950 0,960 0,975 0,950 0,960 0,975 0,950 0,960 0,975 0,950 0,960 0,975 0,950		P	
	(except power generation systems with S _r ≤3.68 kVA without converter) Power generation systems (except power generation systems with S _r ≤ 3.68 kVA without converter) must be able to cover a displacement factor of $\cos \varphi = 0.9$ underexcited to $\cos \varphi = 0.9$ overexcited ($Q_{max} = \pm 0.436$ S _r) at nominal apparent power Sr. In the operational ranges Q/P _{max} > 0 and U/p.u. < 0.85 (overexcited operation and undervoltage) or Q/P _{max} < 0 and U/p.u > 1.1 (underexcited operation and overvoltage), the power generation system should still be able to provide voltage		P	
	support.			

_	Page 21 of 243	Report No.: 6	134610.50	
	TOR Erzeuger			
Clause	Requirement - Test	Result - Remark	Verdict	
	P/Sr -0,312 0,90 0,80 0,70 0,60 0,50 0,4	The output power of grid- connected PV inverters under test more than 3.68 kVA.	N/A	
	Converter) below the nominal apparent power P/Sr 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,	The output power of grid-connected PV inverters under test more than 3.68 kVA.	N/A	
	P is the active power of the power generation system in W; Q is the reactive power of the power generation system in var and S, is the nominal apparent power of the power generation system in VA. For power generation systems with Sr > 3.68 kVA without converter, there is the possibility of a further limitation of		N/A	
	the reactive power range below the nominal apparent power if value ranges (e.g. below the minimum excitation limit) cannot be reached due to the limits in the PQ diagram of the generator. These inadmissible operating ranges are omitted from the reactive power range according to figure 11. However, the basic design of the generator must always be based on the displacement factor according to chapter 5.3.3.1. In the operational range P < 0.2 S _r , the reactive power behaviour of the power generation system must not change abruptly; exact compliance with the specification is not required in this operational range (grey area in the figure).		P	

	1 ago 22 oi 2 io	Troport to:: e	
TOR Erzeuger			
Clause	Requirement - Test	Result - Remark	Verdict
	If a minimum displacement factor $\cos \phi$ can be set in this operational range for power generation systems with converters and $S_r > 3.68$ kVA, $\cos \phi = 0.4$ should be selected.		Р
	For power generation systems that can be operated stably for an unlimited period of time only above a minimum active power, 0.2 P _{max} is to be replaced by this minimum power for stable operation.		P
5.3.3.3	Reactive power compensation		N/A
	Power generation systems with grid connection point at MV level		N/A
	The relevant grid operator can request that additional reactive power be provided if the grid connection point is neither at the terminals of the grid transformer at the MV level nor at the terminals of the converter (generator) if there is no grid transformer. This additional reactive power must cover the reactive power requirement of the MV line or the MV cable between the terminals of the power transformer of the power generation system or, if there is no power transformer, between the terminals of the converter (generator) and the grid connection point and must be provided by the grid user.	The grid-connected PV inverters under test were connected to LV distribution network.	N/A
	Power generation systems with compensation requirement		N/A
	Power generation systems that have a reactive power requirement (e.g. asynchronous generators) that should not be covered by the distribution system require a device for reactive power compensation (e.g. capacitors). The type, power and circuit of the reactive power compensation system as well as the type of control and the degree of compensation (see TOR main section D1) must be coordinated with the grid operator.		N/A
	Compensation capacitors must not be connected before the generator or must be switched off at the same time. It should be noted that when the power generation system is disconnected from the distribution system, the generator may be self-excited by the compensation capacitors in certain circumstances, which must be avoided by a suitable circuit.		N/A
	If the power generation system has a heavily fluctuating reactive power requirement, the reactive power compensation must be adjusted accordingly. Overcompensation without specification by the grid operator must be avoid-ed. Additional measures (e.g. choking of compensation capacitors) may be necessary to avoid resonances and inadmissible repercussions on the grid operator's audio frequency ripple control systems. The type and scope of such measures are specified in the TOR main section D3.		N/A
5.3.4	Procedure for reactive power provision		Р
- '			1

	TOR Erzeuger		710-10.00		
Clause	Requirement - Test	Result - Remark	Verdict		
	The reactive power of the power generation system must, within its reactive power ranges in accordance with chapter 5.3.3, automatically adjust to the specific fixed value or the specific characteristic curve determined by the relevant grid operator as part of the procedure for providing reactive power.		P		
	For power generation systems, one of the following procedures for providing reactive power is specified by the grid operator:		Р		
	$Power generation systems $$ Procedure converter only all other $$ S_r \le 3.68 \text{ kVA} S_r > 3.68 \text{ kVA} S_r \ge 3.68 \text{ kVA} $$ S_r \ge 3.68 \text{ kVA} $$$ fixed displacement factor.		Р		
	$\cos \varphi$ fix x x x x x Displacement factor / active power characteristic x x x x x curve $\cos \varphi(P)$				
	Reactive power voltage characteristic curve Q (U) x x x x x x x x x x x x x x x x x x x				
	A procedure for providing reactive power is specified in the grid connection contract. In justified cases, a different procedure may also be specified by the relevant grid operator at a later point in time. This change must be implemented by the grid user within 12 months.		P		
	The default setting without the grid operator's specification is a fixed displacement factor $\cos \varphi = 1$ and a fixed reactive power Q fix = 0.		Р		
5.3.4.1	Default characteristic curve for the procedure for providing reactive power cos φ (P) in the low-voltage network	(See appended table)	Р		
	The $\cos \varphi$ (P) control should be deactivated by default.		Р		
	0.9/0.95*) 1 political depending on the required Q capability				
	Figure 12: Displacement factor / active power characteristic curve cos φ(P) in the low-voltage network cos φ is the displacement factor of the power generation system; P is the active power of the power generation system in W; P _{max} is the maximum capacity of the power generation system in W; S _{max} is the maximum apparent power of the power generation system in VA.				
5.3.4.2	Default characteristic curve for the procedure for providing reactive power Q(U) in the low-voltage network		Р		

Page 24 of 243

	TOR Erzeuger			
Clause	Requirement - Test	Result - Remark	Verdict	
	Q/Sr Q _{mos} /S _r a 1 2 3 4 5 5 8 4 4 5 5 6 4 4 6 4 6 4 6 4 6 4 6 6 6 6 6	(See appended table)	P	
	Figure 13: Reactive power / voltage characteristic curve Q(U) in the low-voltage network Q is the reactive power of the power generation system in var; Q _{max} is the maximum reactive power in the overexcited range; -Q _{max} is the maximum reactive power in the underexcited range; S _r is the nominal apparent power of the power generation system in VA; U is the operating voltage and U _n is the nominal voltage.			
	The following default setting of the four interpolation points is recommended: Interpolation point U/U_n Q/S_r a $0.92\ U_n$ Q_{max}/S_r $\cos\varphi_{min}$ overexcited b $0.96\ U_n$ 0 $\cos\varphi=1$ c $1.05\ U_n$ 0 $\cos\varphi=1$ d $1.08\ U_n$ $-Q_{max}/S_r$ $\cos\varphi_{min}$ underexcited Table 5: Interpolation points of the reactive power / voltage characteristic curve $Q(U)$ in the low-voltage network		Р	
	As part of the procedure for the reactive power control Q(U), the interpolation points (minimum 4) of the Q(U) characteristic curve must be freely parametrisable in the reactive power and the voltage in the range according to chapter 5.3.3.1 (step size ≤ 1% U _n). Unless each phase is regulated individually, the highest phase voltage must be regulated symmetrically. The same reference-arrow system must apply to P and Q during setup.		Р	
	The dynamics of the Q(U) control corresponds to a filter of the first order (PT1 element) with a configurable time constant between 3 s and 60 s, whereby a time constant of 5 s must be set by default. At least 95% of a new setpoint must be reached within the triple time constant.		P	
	The Q(U) control must be activated after a setpoint jump after an initial time delay that is as short as possible (maximum 1 s). Any parametrisable artificial delay time must be deactivated or set to 0 s.		P	
5.3.5	Voltage control of synchronous power generation systems		N/A	
5.3.6	Voltage-regulated active power reduction		Р	
	In order to comply with the upper limit value of the voltage according to ÖVE/ÖNORM EN 50160, the grid operator of power generation systems with a grid connection point in the low voltage network may require a voltage-regulated active power reduction		Р	
	The application and specifications for the P(U) control are agreed upon in the grid connection contract. The P(U) controls integrated in the inverter must be used.		Р	
	The grid user can choose between two procedures for voltage-regulated active power reduction:		P	

Page 25 of 243

	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	a) For the P(U) active power operating range, the maximum permissible active power output is limited according to figure 14 (a) depending on the voltage. If the U _{kink} voltage is exceeded, the permissible maximum value of 100% of the rated active power is linearly reduced to 0 at U _{limit}		Р
	b) The voltage-regulated active power reduction is implemented by a P(U) characteristic curve. If the U _{kink} voltage is exceeded, the feed-in power is reduced linearly by ΔP based on the current feed-in power P _{kink} (active power at the time when U _{kink} is exceeded) according to figure 14 (b).		Р
	P/P _n 110% U _n 11		Р
	Figure 14: Default settings of the $P(U)$ control P is the active power of the power generation system in W ; P_n is the nominal active power of the power generation system in W ; U is the operating voltage in V ; U_n is the nominal voltage of the grid in V ; U_{kink} is the operating voltage in V at which the $P(U)$ control starts; U_{limit} is the operating voltage in V at which the active power should have been completely reduced; ΔP is the change in active power in W ; Pkink is the active power at the time when U_{kink} is exceeded in W .		
	For power generation systems with converters and grid connection point at low voltage level, the P(U) control should be active by default and configured according to figure 14 point a).		Р
	The dynamics of the P(U) control corresponds to a filter of the first order (PT1 element) with a configurable time constant between 3 s and 60 s, whereby a time constant of 5 s must be set by default. 95% of a new setpoint must		Р
	be reached within the triple time constant. The P(U) control must be activated after a setpoint jump after an initial time delay that is as short as possible (maximum 3 s). Any parametrisable artificial delay time must be deactivated or set to 0 s.		Р
	Unless otherwise agreed between the grid operator and the grid user, the measurement point for the implementation of these requirements is the generator terminal or connection point of the inverter.		Р
	The setting values Ukink and Ulimit can also be set differently in agreement with the grid operator, in particular to account for the execution of the energy dissipation in the grid user's system. The regulation must not cause vibrations or jumps in the output power.		Р
	Power generation systems that can only be operated above a minimum output (e.g. internal combustion engines) must reduce the active power only up to this minimum output according to procedure a) or b).		N/A
5.4	Grid management and system protection requirements		Р
5.4.1	Active power specification of the grid operator		Р

Page 26 of 243

	TOR Erzeuger	Neport No.: C	710101010		
Clause					
Clause	Requirement - Test	Result - Remark	Verdict		
	The power generation system must have a telecontrol interface (input port), which enables to terminate the active power output within 5 seconds after the corresponding instructions have been received.		Р		
	The grid operator shall not intervene in the control of the power generation system. It is only responsible for the signalling - see also chapter 6.2.1 "Remote control or telecontrol interface". The active power output may be changed according to the technical capacities of the power generation system under the sole responsibility of the system operator.		Р		
	The relevant grid operator is entitled to temporarily specify or limit the active power up to shut down in the following (technical) cases: - to avert an immediate, even suspected danger to people or property; - if this is necessary due to compliance with official orders, requirements, etc.; - where the provision of network services is prevented due to force majeure or other circumstances beyond control of the grid operator; - where measures are taken by transmission system operators in accordance with the TOR system protection plan to avoid major disruptions and mitigate their effects; - in the event of an impending or already occurring system collapse; - when performing maintenance work on the grid. These measures including the rationale shall be duly documented by the grid operator in a suitable form (e.g.		P		
	entry in the logbook) and the system operators concerned shall be provided information upon request.				
5.4.2	Simulation models and simulation parameters		N/A		
	There are no requirements for power generation systems in this regard		N/A		
5.4.3	System protection		N/A		
	Power generation systems with a grid connection point at MV level must comply with the specifications of the national system protection plan in accordance with Article 11 ER-VO or TOR system protection plan.		N/A		
5.5	Synchronisation and grid recovery requirements		Р		
5.5.1	Synchronisation devices		Р		
	Power generation systems must be equipped with a		Р		
	synchronisation device. Power generation systems must be able to be synchronised within the frequency ranges specified in Table 1.		P		

Page 27 of 243 Report No.: 6134610.50

rage 27 of 243 Report No.: 0134010.3				
	TOR Erzeuger			
Clause	Requirement - Test	Result - Remark	Verdict	
	Power generation systems (with the exception of asynchronous generators) or off-grid networks with systems of grid users with integrated power generation systems which are not switched on without voltage may only be connected to the grid via synchronisation devices or only after a check has been carried out to ensure frequency synchronism and voltage equality between the grid and systems of grid users.		P	
	For off-grid power generation systems (including electrical energy storage devices), asynchronous restarting must be prevented after grid failure and voltage recovery.		Р	
	If grid decoupling protection and synchronisation devices are implemented in a common device, faulty synchronisation must be prevented (e.g. by means of a test switch) when feeding in analogue test quantities for the protection test.		Р	
	For inverters with built-in grid synchronisation, the built-in frequency and voltage equalisation replaces a synchronisation device implemented in a separate device.		Р	
	The settings of the synchronisation devices must be adapted to the operating conditions of the grid and are specified by the grid operator.		Р	
5.5.2	Connection conditions		Р	
	The following conditions apply to the (automatic) grid connection after an unintentional disconnection, both due to the faulty operation of a power generation system and due to a grid disturbance.		Р	
	It must be possible to connect power generation systems automatically to the grid. The grid connection may only be made if the following conditions are met: - U/p.u. ≥ 0.85 and U/p.u. ≤ 1.09; and - grid frequency between 47.5 Hz and 50.10 Hz; and - there is no triggering criterion of the grid decoupling protection. The waiting time must always be adjustable between 0 and 300 seconds. If the grid operator does not specify a different waiting time, a waiting time of 60 seconds is recommended.		P	
	After automatic connection to the grid in the event of faulty operation, the active power delivered to the grid must not exceed the gradient of 10% P _{max} per minute. In order to reach the minimum performance level for stable operation, the grid user and the relevant grid operator may agree to different gradients in accordance with Chapter 5.4.1 "Active power specification by the grid operator".		P	
	The following default settings are recommended for non- synchronous power generation systems with inverters and grid connection point at the low voltage level:		Р	
	Waiting time for automatic or operation-related connection: 60 s Waiting time for connection after the decoupling protection has been tripped: 300 s		Р	

	TOR Erzeuger		T
Clause	Requirement - Test	Result - Remark	Verdict
	10% P _{max} per minute is recommended as the setting for the maximum gradient of the active power increase in case of a reconnection after a tripping of the decoupling protection. As a rule, non-self-excited asynchronous generators may only be switched on in the range from 95% to 105% of their synchronous speed. If the maximum permissible voltage drop is exceeded when connecting, appropriate measures for current limitation must be provided (see TOR part D2).		P
	When a power generation system is connected to the grid or when compensation devices are switched on or off, the grid of the relevant grid operator must not be influenced in an non-permitted way (see TOR Part D2).		N/A
	As a rule, non-self-excited asynchronous generators may only be switched on in the range from 95% to 105% of their synchronous speed. If the maximum permissible voltage drop is exceeded when connecting, appropriate measures for current limitation must be provided (see TOR part D2).	Not asynchronous generators.	N/A
5.5.3	Black start capability		N/A
	There are no requirements for power generation systems in this regard.		N/A
5.5.4	Island operation capability		N/A
	There are no requirements for power generation systems in this regard.		N/A
5.5.5	Fast resynchronisation		N/A
	There are no requirements for power generation systems in this regard.		N/A
5.6	Requirements regarding data exchange		
	There are no requirements regarding the transmission of real-time data, unavailability data and schedules to the relevant grid operators.		N/A
6	DESIGN OF THE SYSTEM AND PROTECTION		Р
6.1	Primary technology		Р
6.1.1	Connection system and symmetry		Р
	The connection system is the physical connection between the system of a grid user and the grid system (network side). It begins at the technically suitable connection point (network access point) and ends at the property line agreed in the grid connection contract. The grid operator is responsible for the operationally ready construction, modification and extension of the connection system; the grid user is responsible for the parts of the system located after the property line.	The grid operator and the plant owner are responsible for this.	N/A
	Power generation systems, including any electrical energy storage devices, must be designed as symmetrical three-phase systems, permanently connected to the grid and equipped with an appropriate switching and decoupling point.		Р
	Supply via a touch-proof plug connection is permissible if the system as a whole is expressly approved for such use.		Р

TOR Erzeuger			
Clause	Requirement - Test	Result - Remark	Verdict
	As an exception, power generation systems can also be connected to the distribution grid in single phase, taking into account a maximum resulting unsymmetrical power of 3.68 kVA. A maximum of 3 x 3.68 kVA single-phase (distributed over the three outer conductors) can therefore be connected.		N/A
	If a symmetrical supply of the power generation units into the individual outer conductors of the three-phase grid is ensured by a communicative coupling between single- phase power generation units, the power generation system is to be regarded as a symmetrical three phase power supply.		N/A
	When using DC-coupled systems (electrical energy storage devices together with DC generation system connected to the same inverter), up to three single-phase inverters with a maximum of 3.68 kVA each may also be connected to the three-phase outer conductors.		N/A
	When using AC-coupled systems (electrical energy storage devices including AC converter and generation system connected on the AC side), the following case distinction applies to avoid inadmissible asymmetries in the grid:		Р
	 Case 1: Single-phase supply, single-phase storage Since storage systems are generally used to maximise internal consumption, it is currently assumed that the storage systems do not feed back into the grid. In this case, to achieve minimum asymmetry, the generation system and the inverter of the electrical energy storage device must be connected to the same phase. 	Three-phase hybrid inverter.	N/A
	 Case 2: Single-phase supply, three-phase storage or vice versa The apparent power of a single-phase connected inverter, an electrical energy storage device or a single-phase connected power generation unit may be 3.68 kVA and a maximum of 3 single- phase devices divided between the three phases may be connected. 	Three-phase hybrid inverter.	N/A
	 Case 3: Three-phase supply, three-phase storage. The permissible degree of asymmetry according to TOR D2 of the AC-coupled system is limited with a value of k_u = 0.7%. 	Three-phase hybrid inverter.	Р
6.1.2	Switching point		N/A
	For reasons of operational management and personal safety, a switching point with isolating function and load switching capacity must be available to the grid operator at all times. It serves to comply with the five safety rules according to ÖVE/ÖNORM EN 50110-1 and can be identical with the decoupling point.	The grid operator and the plant owner are responsible for this.	N/A
	In low-voltage grids, the switching point can be omitted if the inverters are equipped with an automatic disconnection point in accordance with ÖVE Guideline R 25, and the grid-effective rated power of the grid user at the grid connection point does not exceed 30 kVA		N/A
6.1.3	Decoupling point		Р

	TOR Erzeuger	report vo	
Clause	Requirement - Test	Result - Remark	Verdict
	The decoupling point ensures that the power generation system is disconnected from the grid. The switching device of the decoupling point (decoupling switch) is actuated by the protection device (decoupling protection) and trips automatically if one of the protection functions of the protection device responds.		Р
	The decoupling point must be determined in agreement with the grid operator and can be provided on the high or low-voltage side. The switching device of the decoupling device must be able to be triggered electrically instantaneously and provide all-pole galvanic isolation.		P
	If isolated operation is not planned, the decentralised switching devices of the individual power generation units (generator circuit breaker, integrated switching devices of the automatic disconnection point) can be used as decoupling points.		Р
	In off-grid power generation systems with a grid connection point in the low-voltage grid, a four-pole disconnection may be necessary and may be required by the grid operator. In this case, the safety regulations for the separation and earthing of a PEN conductor must be observed in particular.		Р
	The switching device of the decoupling point must have a minimum load switching capacity and be designed for the maximum short-circuit power to be disconnected.		Р
	If fuses are used for short-circuit protection, the switching capacity of the switching device must be rated at least in accordance with the operating range of the upstream fuse. However, the switching device must be suitable for switching on the power generation system and for switching off the maximum possible generation capacity.		N/A
	It must be possible to check the function of the switching devices of the decoupling point. This check can be omitted for automatic disconnection points according to chapter 6.3.1.		Р
6.1.4	Neutral point treatment		Р
6.1.4.1	Grid connection in the low-voltage grid		Р
	Asynchronous generators are generally operated in delta connection. The neutral point must be operated isolated in a star connection.	Not asynchronous generators	N/A
	Synchronous power generation systems can be operated with isolated neutral point. In the case of synchronous power generation systems whose neutral point is connected to the PEN conductor of the grid, this may only be done directly if the harmonics current occurring via the neutral point is less than approx. 20% of the rated current of the generator. Higher currents may require the installation of a neutral point choke or other measures.	Not synchronous Power generation systems	N/A
6.1.4.2	Grid connection in the medium-voltage grid The devices for earthing the neutral point on the grid side.	Not connected to the medium-voltage grid.	N/A N/A
	The devices for earthing the neutral point on the grid side of power transformers must comply with the specifications of the relevant grid operator.		IN/A
6.2	Secondary technology		Р

	TOR Erzeuger		. 0134010.30
Clause	Requirement - Test	Result - Remark	Verdict
6.2.1	Remote control or telecontrol interface		Р
	The telecontrol interface for active power cut-off in accordance with chapter 5.4.1 and for any reactive power specification in accordance with chapter 5.3.4 must be implemented in the form of potential-free contacts, if provided for by the relevant grid operator in the grid connection contract, which are made available to the grid operator on the telecontrol device (e.g. radio ripple control receiver, gateway). Any requirements for the devices for the transmission of real-time data according to chapter 5.6 are agreed between the relevant grid operator and grid user.		P
6.2.2	Backup systems for communication		N/A
	There are no requirements for power generation systems in this regard		N/A
6.2.3	Control systems and settings		Р
	For non-synchronous power generation systems with inverters and grid connection point at low voltage level, it must be ensured that the settings described in this part of the TOR cannot be changed by the grid user and that they are protected against unauthorised changes. Software updates must not lead to a change in settings. This can be achieved, for example, by appropriate password protection of the settings. The password must not be given to the user.		P
	If the actual set values deviate from the recommended default settings, this should be indicated on the device or shown on the display or when the settings are read out (e.g. via an interface).		P
6.2.4	Measuring instruments		N/A
	The RfG Regulation does not contain any requirements in this regard for power generation systems.		N/A
6.3	Protection devices and grid decoupling protection		Р
	The relevant grid operator must define the systems and settings necessary to protect the grid, taking into account the characteristics of the power generation systems. The protection systems required for the power generation system and the grid and the settings relevant to the power generation system are coordinated and agreed between the relevant grid operator and the grid user. The protection systems and settings for internal electrical faults must not jeopardise the required performance of a power generation system.		P
	The electrical protection of the power generation system has priority over operational regulations, whereby the safety of the grid, the health and safety of employees and the public and the limitation of any damage to the power generation system must be considered.		P

Page 32 of 243

	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	Taking into account the previous paragraph, the settings of the protection devices must be selected in such a way that they support the grid operation and ensure that grid faults must always be disconnected first from the grid protection devices selectively to the smallest possible extent. Power generation units may only be switched off as the last objects in the event of a grid fault and only in case of danger (end time schedule).		P
	In principle, the selection, scope and functions of the electrical protection devices of power generation units (generator protection) are solely at the discretion and responsibility of the system operator. When making the selection, the selectivity and compatibility with the grid protection devices must be taken into account.		P
	Significant changes in the operating conditions must be met by a timely review and adaptation of the protection concept.		Р
6.3.1	General information on the grid coupling protection		Р
	The provisions of this chapter do not refer to the protection measures for the power generation system or power generation units (generator protection), but exclusively to the protection functions of the grid decoupling protection.		P
	The protection device actuates the central or the decentralised decoupling switch if one of the protection functions in the protection device trips in the event of faulty operating states.		P
	In principle, a central protection device must be provided as separate electrical equipment.		N/A
	Up to a grid-effective rated power of a maximum of 30 kVA per grid connection point of a grid user in the low-voltage grid, automatic disconnection points in accordance with ÖVE Guideline R 25 can also be used. The method used to protect against decoupling is left to the system operator.		P
	The basic mode of operation of the protection devices and the interlocking devices is shown in the functional examples in Appendix A2.		Р
	Tripping of the decoupling point by the protection devices need only be effective if the power generation system is operated in parallel with the grid.		Р
	The individual protection functions of the protection device can be implemented in individual devices or in a joint device.		Р
	The protection functions can be implemented either in a hardware separate from the system control or in a common hardware. This also applies to equipment for connection control and connection release. If the protection functions are performed separately from the system control, the trip contacts of the protection devices must be wired directly to the switching device of the decoupling point.		P

Page 33 of 243

TOR Erzeuger					
Clause	Requirement - Test	Result - Remark	Verdict		
	A shunt opening release of the switching device of the decoupling point must not be operated with or dependent on the grid voltage or the generator voltage. Undervoltage releases in closed circuit, which are operated with the grid voltage or the generator voltage, may be used. Failure of the auxiliary voltage or the response of the self-monitoring of the protection device must lead to tripping of the decoupling switch. This requirement applies equally to independent protection devices and to combined devices in which protection functions and control functions are implemented in a common hardware.		P		
	It must be possible to check the protection functions by setting analogue values (current, voltage). This check can be omitted for automatic disconnection points according to chapter 6.3.1.		Р		
	The grid operator can seal the protection devices or protect them in another way against unwanted changes or have them protected in another way (e.g. code word protection).		P		
	Additional protection and safety regulations for power generation systems, which represent a switchable supply alternative to the general power supply, are contained in ÖVE-EN 1 part 4 Section 53 or OVE E 8101-5-551 or OVE E 8101-7-717 and OVE guideline R 20. Compliance with the criteria regarding the quality of supply for island operation in the system of the grid user is the responsibility of the system operator.		P		
	Replacement power supply systems which can feed into a grid-supplied consumer system and which are not equipped for grid parallel operation must be equipped with an interlocked changeover device (changeover with interruption).		P		
	Power generation systems for purely island operation (e.g. power generation systems in the systems of the grid user without grid connection or replacement power supply systems) are not subject to these conditions.		P		
6.3.2	Protective functions of the protection device for the decoupling point		Р		
6.3.2.1	Voltage protection functions.		P		
	The voltage protection functions must meet the accuracy of ≤ 1% in the range from 45 Hz to 55 Hz and be three-phase with adjustable tripping delay. (For exception, see Table 8: Setting values for the decoupling protection of inverters with automatic disconnection point).		P		
	In medium-voltage grids with insulated or inductively earthed neutral point, the voltages between the outer conductors are monitored; in low-voltage grids, the voltages of the outer conductors are monitored against the neutral conductor.		P		
	The response values must be adjustable in steps of ≤ 0.5% U _n . The time delay must be adjustable at least in the range from 0 s to approx. 180 s with a step of 0.05 s.		Р		

Page 34 of 243

	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	 The use of multi-stage relays offers the advantage of a better adaptation of the tripping values to the grid conditions. Undervoltage protection U< or U< The undervoltage protection trips when one of the three measuring elements detects that the voltage has fallen below the set threshold, i.e. the measuring elements are logically OR-linked. The disengaging ratio must be adjustable in the range from 1.01 Un to 1.05 Un. Overvoltage protection U> or U>> The overvoltage protection is activated when one of the three measuring elements detects that the set threshold value has been exceeded, i.e. the measuring elements are logically OR-linked. The disengaging ratio must be adjustable in the range from 0.95 Un to 0.99 Un. 		P
6.3.2.2	Frequency protection functions		Р
	The frequency protection must be independent of voltage at least in the range from $0.7~U_n$ to $1.3~U_n$. The measuring time must be shorter than $100~ms$; any time delay must be able to be set to "undelayed". The response values must be adjustable with a step of $\leq 0.2~Hz$ and the measuring accuracy must be $\leq 50~mHz$. The frequency protection functions can be single-phase or three-phase. In isolated and compensated networks only phase-to-phase voltages are to be evaluated. — Under-frequency protection f< — Over-frequency protection f>		P
6.3.2.3	Reactive power undervoltage protection (Q+ & U<)		N/A
	This point applies only to power generation systems connected to the grid at MV level.	Not connected to MV network	N/A
	The reactive power undervoltage protection (Q+ & U<) disconnects the power generation system from the grid after 0.5 s if the voltage at the grid connection point is < 0.85 Un or Uc and if the power generation system simultaneously absorbs reactive power from the grid of the grid operator. Always use the phase-to-phase voltages for voltage measurement. The trips of the three measuring elements are logically AND-linked.		N/A
	The protection monitors the system-compatible behaviour of the power generation system after a fault in the grid. Power generation systems that hinder the restoration of the grid voltage by absorbing inductive reactive power from the distribution grid or by insufficient voltage support are disconnected from the grid before the end time of the grid protection devices is reached.		N/A
6.3.2.4	Earth fault protection (U _e >)		Р
	The grid operator can require an earth fault detection in order to be able to disconnect the power generation system from the grid in the event of an earth fault or to prevent it from being connected. Setting ranges: 0 to 70% voltage shift in a time range from 0 to 180 s		Р

		Page 35 of 24	13	Report N	No.: 6134610.50
		TOR Erzeuge	er		
Clause	Requirement - Test			Result - Remark	Verdict
6.3.2.5	In some cases, the use of a may be necessary to ensur for secure grid operation.				Р
6.3.3	Setting values for the grid of	lecoupling protection			Р
	Within the framework of the the grid operator determine decoupling protection and condifications to achieve the this is done in coordination generation system and in copossibilities.	s the setting values for can, if necessary, male protection goals. In with the operator of the	or the grid ke principle, ne power		Р
	The setting values of the vomust be referred to the non voltage) or to the agreed suand high voltage).	ninal voltage Un (for lo	w		Р
	If a synchronous power geres synchronous power general operated with restricted dyrestart (ARS) in an upstreal and tripping time of the grid be measured in such a way fault on this line the arc car voltage-free pause and a sittime is given.	tion system which is paramic grid support is a operated with an aum grid, the tripping the decoupling protection that in the event of a extinguish in the renufficiently long deionis	not tomatic reshold n must in arc naining sation		N/A
	If complete dynamic grid support or activated LV FRT (Low Voltage Fault Ride Through) is required, longer setting times for the undervoltage protection may be required than those specified in the following tables.				P
	A total tripping time of the individual protection functions, including the intrinsic time of the switching device in the decoupling point of maximum 0.2 s must be achievable				Р
6.3.3.1	Setting values for the grid decoupling protection in the low-voltage grid			Р	
	The following setting values are recommended as the basic setting of the grid decoupling protection for synchronous power generation systems:				N/A
		ange of the Recommended prion relay setting v			
	= '	1.30 <i>U_n</i> ≤1.15 <i>U_n</i> 1.30 <i>U_n</i> 1.11 <i>U_n</i> 1.11 <i>U_n</i>	≤0.1 s ≤60 s ≤0.1 s		
	Undervoltage protection U _{eff} < 0.10 – Undervoltage protection U _{eff} << 0.10 –	1.00 <i>U_n</i> 0.8 <i>U_n</i> 1.00 <i>U_n</i> 0.3 <i>U_n</i> 55 Hz 51.5 Hz (50.2 - 51.5 Hz)	0.2 – 1s 0.2 s ≤0.1 s		
	Table 6: Setting values for the grid decoup	50 Hz 47.5 Hz bling protection of synchronous power the low-voltage grid	≤0.1 s generation		

Page 36 of 243 Report No.: 6134610.50

		<u> </u>	age 30 01 24		report 146.	. 6134610.3
			ΓOR Erzeuge	er		
Clause	Requirement - Test				Result - Remark	Verdict
	The following setting values are recommended as basic settings of the grid decoupling protection for non-synchronous systems:				N/A	
	Function	Setting range of protection rela	the Recommended			
	Overvoltage protection U _{eff} >>	1.00 – 1.30 <i>U</i>		≤0.1 s		
	Overvoltage protection U _{eff} > or	1.00 – 1.30 <i>U</i>		≤60 s		
	Monitoring protection U _{eff} > with monitoring of the floating 10 min aver value	rage	1.11 <i>U</i> _n	≤0.1 s		
	Undervoltage protection U _{eff} <	0.10 – 1.00 <i>U</i>	0.8 U _n	1.5 s		
	Undervoltage protection U _{eff} <<	0.10 - 1.00 <i>U</i>	0.25 U _n	0.5 s		
	Over-frequency protection f>	50 – 55 Hz	51.5 Hz (50.2 – 51.5 Hz	≤0.1 s		
	Underfrequency protection f< Table 7: Setting values for the grid of	45 – 50 Hz lecoupling protection of tems in the low-voltage		≤0.1 s ver generation		
	If inverters with limited dynamic grid support according to 5.2.2.1 are used with an automatic disconnection point according to chapter 6.3.1, it must be ensured that they can be switched off under the grid conditions specified in Table 8.					
	Function		Setting val	ıes		
	Overvoltage protection		1.15 <i>U</i> _n	≤0.1 s		
	Overvoltage protection U _{eff} > with mon 10 min average value (monitoring of	the voltage quality)	1.11 <i>U_n</i> ²⁶	≤0.1 s		
	Undervoltage protection		0.8 <i>U</i> _n	≤1.5 s		
	Undervoltage protection		0.25 <i>U</i> _n 51.5 Hz	≤0.5 s ≤0.1 s		
	Over-frequency protect Underfrequency protect		47.5 Hz	≤0.1 s ≤0.1 s		
	Grid failure ²⁷		47.0112	_0.13 ≤5 s		
	Table 8: Setting values for the decoupling protection of inverters with automatic disconnection point					
6.3.3.2	Setting values for grid	decoupling pr	otection in th	е	Not connected to the	N/A
	medium-voltage grid				medium-voltage grid.	
	The following setting value	alues are reco	ommended a	s the		N/A
	basic setting of the grid decoupling protection for					
	synchronous power ge					
	Function Se	Satting range of the		tion settings		
			1.05 – 1.15 <i>U</i> _C	≤0.10 s		
	Overvoltage protection U>	1.00 – 1.30 <i>U</i> _n	1.02 - 1.05 U _C	≤60 s		
	Undervoltage protection U<	0.10 – 1.00 <i>U_n</i>	0.7 U _C	0 – 1 s		
	- ·	0.10 - 1.00 <i>U_n</i>	$0.3~U_{C}^{28}$	≤0.2 s		
	Over-frequency protection f>	50 – 55 Hz	51.5 Hz	≤0.10 s		
	Underfrequency protection f<	45 – 50 Hz	47.5 Hz	≤0.10 s		
	protection Q+&0<	0.70 – 1.00 <i>U</i> _n	0.85 U _C	$t_1 = 0.5 \text{ s}$		
	Table 9: Setting values for the grid system	decoupling protection s in the medium-voltag		er generation		

			TOR Erzeu			10 0104010.00
Clause	Requirement - Test				Result - Remark	Verdict
	The following setting basic setting of the gsynchronous power	grid decoupling	g protection			N/A
	Function	Setting range of the protection relay	Recommended p	rotection settings		
	Overvoltage protection U>> Overvoltage protection U>	1.00 – 1.30 <i>U_n</i> 1.00 – 1.30 <i>U_n</i>	1.05 – 1.15 <i>U</i> _C 1.02 – 1.05	≤0.10 s ≤60 s		
	Undervoltage protection U<	$0.10 - 1.00 U_n$ $0.10 - 1.00 U_n$	0.8 <i>U_C</i> 0.3 <i>U_C</i> ²⁸	0.2 – 1.5 s ≤0.2 – 0.5 s		
	Undervoltage protection U<< Over-frequency protection f>	50 – 55 Hz	51.5 Hz	⊴0.2 = 0.3 s ≤0.10 s		
	Underfrequency protection f<	45 – 50 Hz	47.5 Hz	≤0.10 s		
	Reactive power /undervoltage protection Q+&U<	0.70 – 1.00 <i>U</i> _n	0.85 <i>U</i> _C	$t_1 = 0.5 \text{ s}$		
	Table 10: Setting values for the g	rid decoupling protectio stems in the medium-vo		s power generation		
	Comments: The setting values re must be converted to the seco secondary nominal transformer v Please note that the tripping time of the switchgear and protection.	ndary voltage according oltage and thus the ref	ng to the transform erence voltage of the	er ratio. U_n is the e protection device.		
6.3.4	Test terminal strip					Р
	must be provided as at an easily accessil the protection device releases for the sect terminal strip (see F The test terminal strautomatic disconned	ole location. T les, the auxiliar lion switch mu igure 15). ip can be omit	he measurin ry voltages a est be routed etted for syste	g inputs of nd the via this ems with apter 6.3.1.		P
	Test terminal st	1 L2 L3 N L1 N Voltage	C NL NG	Use of the off contact: - Normally closed contact for systems with LS - Normally open contact for systems with main protectic		
7	Figure 15: Typi OPERATING PERM			ai suip		Info
1	OFERATING PERIV	III PROCEDO	JINE .			Info.

	Fage 30 01 243	Report No o	101010.00
	TOR Erzeuger		T
Clause	Requirement - Test	Result - Remark	Verdict
	The (future) grid user must demonstrate to the relevant grid operator that they meet the requirements set out in chapter 5 "Behaviour of the power generation system in the grid" and chapter 6 "Execution of the system and protection" as well as the project-specific requirements stipulated in the grid connection contract and runs through the operating permit procedures for the connection described for each power generation system.	The grid energies and the	Info.
	The commissioning and the first parallel operation of the power generation system within the scope of the operating permit procedure may only be carried out in coordination with the relevant grid operator.	The grid operator and the plant owner are responsible for this.	
	The basic procedure for the operating permit procedure is described in Annex A4. The relevant grid operator must declare and publish the details of the operating permit procedure. The operating permit procedure for the connection of each new power generation system includes the submission of an installation document. The grid user must ensure that the required details are entered in an installation document provided by the relevant grid operator and submitted to the latter.		Info.
	The installation document contains general data, technical data and proof of the conformity of the power generation system according to chapter 8.1. The template for an installation document is given in Annex A5.		Info.
	A separate installation document must be provided for each power generation system within the overall power generation installation. If several identical power generation systems/units have been installed in the course of an overall project, the submission of a single installation document is sufficient.		Info.
	The relevant grid operator must ensure that the required information can be provided by third parties on behalf of the grid user.		Info.
	After the acceptance of the complete and appropriate installation document for power generation systems, the relevant grid operator must grant the grid user the operating permit.		Info.
	The grid user must ensure that the relevant grid operator is notified of the permanent decommissioning of a power generation system. The relevant system operator must ensure that third parties, including aggregators, can make such notification.		Info.
8	CONFORMITY		Р
8.1	Proof of conformity		Р
	The grid user must provide proof of the conformity of the power generation system within the framework of the operating permit procedure by submitting the following documents: - Test report of the grid decoupling protection or the protection device of an authorised person/company (except systems with automatic disconnection point and corresponding test report). - Confirmation of contractually compliant installation by the system constructor and the grid user;		Р

Page 39 of 243

	TOR Erzeuger					
Clause	Requirement - Test	Result - Remark	Verdict			
	At the request of the relevant grid operator, the grid user must also provide one or more of the following documents as part of the operating permit procedure: CE declarations of conformity for devices or electrical equipment (depending on the applicability e.g. according to EN 61000-3-2 and EN 61000-3-3 or EN 61000-3-11 and EN 61000-3-12); Test reports of a qualified person/company for automatic disconnection points in power generation systems with a grid connection point at LV level according to ÖVE regulation R 25, or Test reports of a test centre accredited according to ÖVE/ÖNORM EN ISO/IEC 17025 for this specialist area for converter-based power generation systems with grid connection point at LV level in accordance with test standard ÖVE Guideline R 25, which also includes documentation of or a manufacturer's parameterisation manual with the country settings "Austria" (see Appendix A3) has been confirmed, or Test reports of a test centre accredited according to ÖVE/ÖNORM EN ISO/IEC 17025 for this specialist area for converter-based power generation systems with grid connection point at LV level according to VDE-AR-N 4105 or DIN VDE V 0124-100, provided that the system installer or a qualified electrician confirms that a setup with the country settings "Austria" - see Appendix A3 - was carried out under consideration of deviating specific grid operator specifications; Confirmation by the system installer or a qualified electrician for power generation systems with converters and grid connection point at LV level that a setup with the country settings "Austria" - see Appendix A3 - was carried out taking into account deviating specific grid operator requirements. Instead of carrying out the relevant checks, tests and		P			
	simulations (in whole or in part), grid users can demonstrate compliance with the relevant requirement by means of equipment certificates issued by an authorised certification body. In this case, the equipment certificates must be submitted to the relevant grid operator.					

	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	The grid operator reserves the right to be present when the following points are checked: - Separation function of the switching point and control of accessibility; - Protective devices of the decoupling point by specification of analogue test variables and creation of a test report with response values and tripping times; - Triggering of the decoupling switching device by the grid decoupling protection; - Switching on and off as well as functional testing of any compensation devices; - Compliance with the limits of the system perturbations; - Compliance with the connection conditions; - Reactive power and voltage regulation; - Where appropriate, relevant operational measuring equipment.		P
	The test report of the test of the protection functions of the grid decoupling protection device must include at least the following checks: - The trip and disengaging values of the protection functions by feeding in of analogue test variables; - The trip times of the protection functions; - The tripping of the switching device of the decoupling point by the protection functions. When using an automatic disconnection point according to chapter 6.3.1 the inspection must be carried out		P
	according to the instructions of the testing institute or the manufacturer. The relevant grid operator must publicly disclose how the		Р
	responsibilities for compliance testing and simulation are shared between the grid user and the grid operator.		
8.2	Conformance testing and conformance simulations		N/A
8.2.1	Responsibility of the grid user		N/A
	The grid user must ensure that each power generation system complies with the requirements set out in this part of the TOR throughout its lifetime.	Responsibility of the grid user.	N/A
	To this end, the grid user must regularly (in workplaces in accordance with the required intervals of periodic inspections in accordance with ESV 2012; otherwise, however, at least every 5 years) draw up the information specified in Annex A8 and provide this information and documents to the relevant grid operator on request.		N/A
	The grid user may use equipment certificates issued in accordance with regulation (EC) No.765/2008 here.		N/A
	The grid user must inform the relevant grid operator of any planned change to the technical capabilities of a power generation system that could affect the fulfilment of the requirements under this part of the TOR before initiating such a change.		N/A
	The grid user must inform the relevant grid operator of any malfunction or breakdown of a power generation system affecting compliance with the requirements of this part of the TOR immediately upon its occurrence.		N/A

	TOR Erzeuger		
Clause	Requirement - Test Re	sult - Remark	Verdict
8.2.2	Tasks of the relevant grid operator		N/A
0.2.2	The relevant grid operator must publicly disclose how the responsibilities for monitoring compliance are divided between the grid user and the grid operator.		N/A
	The relevant grid operator must verify throughout the lifetime of the overall power generation installation that a power generation system complies with the requirements under this part of the TOR. The grid user must be informed of the result of this check.		N/A
	In individual cases and after reasonable advance notice, the grid operator is also entitled to carry out on-site inspections, in particular of the grid decoupling protection.		N/A
	If the grid user regularly creates the information and documents listed in chapter 8.2.1 and presents it to the grid operator on request, it is assumed that the obligation according to Art. 41 (1) RfG regulation has been fulfilled.		N/A
	The relevant grid operator may rely on equipment certificates issued by an authorised certification body for this test.		N/A
9	OPERATION		N/A
9.1	General		N/A
	The operation of electrical systems according to ÖVE/ÖNORM EN 50110-1 includes all activities that are necessary for the electrical system to function. This includes switching, control, monitoring and maintenance as well as electrical and non-electrical work.		N/A
	and guidelines of the grid operator must be observed in pla	e grid operator and the ant owner are sponsible for this.	N/A
	For example, a contract to be concluded between the operator of the power generation system and the grid operator should include the following points: - Definition of property lines and, if applicable, limits of the area of responsibility (e.g. area of availability, operational management area, access authorisations) between grid operator and grid operator must be defined, - Designation of a system operator with overall responsibility for the safe operation of the electrical system according to ÖVE/ÖNORM EN 50110-1, - Type and manner of the functionality of the grid decoupling protection and the decoupling switching devices (e.g. repeat tests), type and manner of document tests, - Supplementary agreements on the exchange of information, - Procedure for work necessary for operation and planned shutdowns in the grid, - The operator of a power generation system must name at least one person authorised to carry out switching operations at the switching point		N/A
9.2	Access to the connection system		N/A

Page 42 of 243

	r age 42 01 243	Report No	0101010.00
	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	The relevant grid operator must be granted access to the switching point, to the grid operator's facilities (e.g. metering equipment) and to the parts of the connection system within their area of responsibility after consultation with the system operator.		N/A
9.3	Operation on site		N/A
	For power generation systems with a grid connection point at MV level		N/A
	The grid operator orders the switching operations for the system components within their exclusive area of disposal (switching instructions). If switching devices are located in the joint area of authority of the grid operator and system operator, the grid operator and system operator or their representatives coordinate the switching operations in these switching fields and determine who orders the switching operation in each specific case. The switching operations for the other parts of the system are ordered by the system operator or their representative. Operating actions are only carried out by order of the person authorised to dispose of the system (grid operator and/or system operator). Operation may only be carried out by qualified electricians or persons trained in electrical engineering.		N/A
9.4	Maintenance		N/A
	The grid user is responsible for the proper maintenance of the power generation system and its operating	Grid user is responsible for this.	N/A
	equipment. The system operator must carry out the corresponding system checks at regular intervals in accordance with the legal requirements and regulations. In particular, the system operator must have the protection and decoupling devices tested by a person authorised to do so and must make the corresponding test results available to the grid operator free of charge on request.		N/A
	When using automatic disconnection points according to chapter 6.3.1 the inspection must be carried out in accordance with the instructions of the testing institute or the manufacturer.		N/A
	The system operator must agree with the grid operator on releases in the grid operator's area of authority in good time.		N/A
9.5	Operation during maintenance or grid disturbances		N/A
	In the event of planned shutdowns of grid equipment by the grid operator as well as in case of maintenance-related changes in the switching status, it may be necessary to temporarily disconnect the power generation system from the grid or to reduce its output. Such work is to be carried out with reasonable advance notice.		N/A

Page 43 of 243

	TOR Erzeuger		
Clause	Requirement - Test	Result - Remark	Verdict
	The grid operator is entitled to disconnect the power generation system from the grid in case of immediate danger and in case of malfunction. Due to the fact that the voltage can return at any time in the event of an interruption in the grid supply, the grid must be considered as permanently live. Usually, the grid operator does provide notification before reconnecting the grid.	The grid operator and the plant owner are responsible for this.	N/A
10	Metering		N/A
10.1	General		N/A
	All tasks in connection with metering and data provision must be performed by the grid operator in compliance with the statutory provisions, in particular the EIWOG 2010 and the Measurement and Verification Act 1950 (MEG) as amended, the General Terms and Conditions of the relevant grid operator, TOR Part F "Metering and metering transmission" and other market rules, in particular chapter 6 "Metering, data formats and standardised load profiles", according to transparent, objective and non-discriminatory criteria.		N/A
10.2	Equipment for metering and measurement		N/A
	The equipment for metering and measurement must be designed according to the requirements of the relevant grid operator.		N/A
	The class accuracy of the transformer cores or transformer windings for metering must correspond to the class accuracy of the metering devices required in TOR part F. At each metering/measurement point, the grid operators generally measure active and reactive energy in each direction (supply and consumption) as well as active and reactive power. The standard applied by the grid operator must be observed when carrying out the setup for metering/measurement and transfer of the relevant data.		N/A
Annex	In the event of contradictions in content between the m 10) and the annexes (Annex A1 to A8) the content of the annexes. This only applies insofar as the respective been declared binding by law or regulation	e main part takes precede	nce over
A1.	Applicability and scope of data exchange		Info.
	This annex will be supplemented following the publication of the SOGL Data Exchange V		Info.
A2.	Functional examples of Grid decoupling protection		Info.
A3.	Setting values for inverters on low-voltage distribution	networks	Р
	The uniform specification of setting values for converter- based power generation systems for connection and parallel operation with low-voltage distribution networks aims to increase planning reliability on the part of manufacturers, installers of electrical systems and the relevant grid operators. In particular, this is intended to prevent incorrect settings and the associated possible impairment of the operational security of the grids.		P

Page 44 of 243

						1.000111	10 0 10 10 10.00
				TOR	Erzeuger	ı	T T
Clause	Requirement -	Test				Result - Remark	Verdict
	of guide values settings in the	that can inverter. A ustable. Be paramete set acco	be summa all parameto before the indersiders deviation rdingly acc	rised ers m nitial ng fro	commissioning of m the default		P
	If the actual se default setting, shown on the c (e.g. via an inte	this should this play or	ld be indica	ated o	on the device or		Р
	Reactive powe	r range of	inverters				Р
		in the readow a conto berator. If the opera	ctive powe rol strategy a minimum	r ranç / spe 1 cos	ge according to		Р
	According to point 5.3.4, for power generation systems with converters, one of the following procedures for reactive power supply is specified by the grid operator: 1a. Fixed displacement factor $\cos \varphi$ fix; 1b. Displacement factor/active power characteristic curve $\cos \varphi$ (P); 1c. Reactive power voltage characteristic curve Q (U); 1d. Fixed reactive power Q fix As a default setting without any specification by the grid operator, a fixed displacement factor of $\cos \varphi = 1$ or a fixed reactive power of Q = 0 should be set.					P	
1a.	Fixed displace	ement fac	tor cos φ	fix			Р
	The default par	rameter is	$\cos \varphi = 1$.				Р
1b.	Displacement	factor/ac	tive powe	r cha	racteristic curve	cos φ (P)	Р
	For cos φ (P)-c recommended characteristic c	for setting curve:					Р
	а		1		0		
	b		1		0.5		
	С	0.9	9 underexcited		1		
1c.	Reactive power				<u> </u>		Р
	For Q(U)-control, the following standard values are recommended for setting the interpolation points of the characteristic curve.					Р	
	Interpolation point	U/U _n			P _{rmax}		
	a	0.92 U _n	Q _{max} /P _{max}	С	os φ _{min} overexcited		
	b c	0.96 <i>U_n</i>	0		$\cos \varphi = 1$ $\cos \varphi = 1$		
ĺ	d	1.03 U _n	-Q _{max} /P _{max}	CC	500 ψ		

		TOR Erzeuger	<u> </u>	
Clause	Requirement - Test		Result - Remark	Verdict
Olduse	A value of 5 s (corresponding to the first-order filter (PT1 behaviour)) n	nust be set as the	a l	P
	setting for the dynamics of the Q(I triple time constant, 95 % of a new reached.	v target value must b	pe	
	The Q(U) control must be activate after an initial time delay that is as (maximum 1 s). Any artificial delay parameterised must be deactivate Note: The time constant of Q(U)-control independently of the time constant functions (e.g. P(U)-control).	s short as possible time that can be do or set to 0 s. must be adjustable	mp	P
1d.	Fixed reactive power Q fix			Р
	A fixed reactive power of Q = 0 is standard parameter	recommended as th	e	Р
2.	Standard settings for active pov	wer control		Р
2a.	Active power reduction at over-	frequency LFSM-O		Р
	The active power reduction at over according to point 5.1.3 must be a default. The following default values must control. Start of power reduction from Statics s ₂ 5% The dynamics of the LFSM-O con a response time of <2 s is achieved time that can be set must be dead.	be set for the LFSM 50.2 Hz (corresponds to 40% PM/Hz) trol must be set so tled. Any additional de	s by I-O hat	P
2b.	Voltage controlled active power			Р
	The voltage-regulated active power according to point 5.3.6 should be inverters at delivery. For P(U)-control, the following standard values applied to the standard values applied to th	er control (P(U)-control standardly active for	or ·	Р
	setting the interpolation points of the characteristic c	urve: 777 110% Un 100%		
	Interpolation point a	112% <i>U_n</i> 0%		
	The dynamics of the <i>P(U)-control</i> order filter (PT1 behaviour), with a constant between 3s and 60s, who so must be set as default. 95% of reached within the triple time constant <i>P(U)</i> control must be activate after an initial time delay that is as (maximum 3 s). Any artificial delay parameterised must be deactivated	a configurable time ereby a time constar a new setpoint must stant. d after a setpoint junt short as possible time that can be	nt of t be	
	Note: The dynamics of the time comust be adjustable independently functions (e.g. Q(U)-control).	onstant of P(U)-contr	rol	Р
3.	Standard settings for the FRT c	apability		Р
	With regard to their FRT capability set so that voltage dips with a resi are passed through without feedin dynamic grid support according to	dual voltage U < 0.8 g in a current (limite	3 Un	Р

		Page 46 c	of 243	Report N	lo.: 6134610.5
		TOR Erze	euger		
Clause	Requirement - Test			Result - Remark	Verdict
4.	Default settings for the connec	Р			
	For connection to the grid accord following setting values (connection recommended: - U ≥ 0.85 p.u. and U ≤ 1.09 p. - Grid frequency >47.5 Hz and The following values are recommended in the event of connection and decoupling protection: 300 s. A gradient of 10 % P _{max} per minute the setting for the maximum gradincrease in case of a reconnection decoupling protection.	on condition u.; and I <50.10 Hz ended as se elated conneter a tripping te is recomment of the a	ettings for the ection: 60 s g of the mended as active power		Р
5.	Default settings for the grid decoupling protection				Р
	The following setting values are resettings of the grid decoupling prosynchronous systems in the low-value synchronous systems in the solution synchronous systems in the low-value systems in the	Recommender setting 1.15 Un 1.11 Un 0.80 Un 0.25 Un 51.5 Hz 47.5 Hz g values annex, it must fied by the provised char	non- id protection relay g values ≤0.1 s ≤0.1 s 1.5 s 0.5 s ≤0.1 s ≤0.1 s ≤0.1 s conditions solutions solution		P P
A4.	Software updates must not lead to This can be achieved, for exampl password protection of the setting not be given to the user.	o a change e, by appro gs. The pass	in settings. priate sword must		Info
	Basic procedure for the operation				Info.
A5.	Templates for installation or verification documents				Info.
A6.	Description of the conformity to				N/A
A7.	Technical characteristics and p	arameters	for simulation	on models	N/A
A8.	Information and documentation	on confor	mity monito	ring	Info.
	Recurrent inspections must be ca with or based on § 7 (3) (1) ESV 2 the function of residual current pro	2012 (at lea	st checking		Info.

Page 47 of 243 Report No.: 6134610.50

	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

OVE-Richtlinie R 25:2020-03-01

5	TESTING		Р
	All tests must be carried out with the setup of the country setting Austria or a setting according to a manufacturer's parameterization guide for Austria.	Default country settings of Austria see General product information part.	P
5.1	Testing the network perturbations		Р
	This section serves to demonstrate the requirements of TOR D2.		Р
5.1.1	General		Р
	Network interference in the sense of this guideline are: Rapid voltage changes; Flicker; Harmonics, harmonics and higher frequencies up to 9 kHz. For systems that feed from a DC voltage source via an inverter (e.g. PV systems, battery storage systems), the tests in accordance with Section 5.1 may only be carried out on the inverter and the system controller. To do this, it must be ensured that the selection of the DC voltage source does not affect the specific system properties	(See appended table)	P
5.1.2	Fast voltage changes		Р
5.1.2.1	Target		Р
	 These tests serve to demonstrate the requirements of TOR D2, Section 9.2.3. The following operating cases (if applicable) must be checked: Switch on at power <10% P_n, or minimum possible power; Switching on at nominal active power; Switching operations when switching between generator stages (if applicable); Switch off at nominal active power (no emergency shutdown, but operational shutdown). 	(See appended table)	Р
5.1.2.2	Test method		Р
	The following tests must be carried out in the four cases mentioned above: - Measurements of the time profiles for currents and phase-neutral voltages, three measurements each; - Determine the one-period effective values of the current and the voltage.		Р
5.1.2.3	Evaluation method		Р
	The switching current factor k_i must be calculated for each switching operation according to the following equation: $k_i = \frac{I_{max}}{I_n}$ I_{max} : largest current measured during the switching process (eg pull-in or switch-on current or the largest operational switch-off current); I_n : Rated current		Р

	Page 48 of 243	Report No.: 6	134610.50
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	For the k _{imax} value, the maximum value is determined from three measurements per switching operation.		Р
5.1.2.4	Documentation		Р
	At least it should be noted: a) measuring devices used; b) Frequency; c) Single-period RMS values of current and voltage; d) all k_i -values; e) k_{imax} -value.	(See appended table)	Р
5.1.3	Flicker		Р
5.1.3.1	General		Р
	These tests serve to demonstrate the requirements of TOR D2, Section 9.2.4. The aim of the test is to determine the flicker coefficient CYk.		Р
5.1.3.2	Testing		Р
	Compliance with the limit values specified in TOR D2, Section 9.2.4 must be demonstrated in accordance with ÖVE / ÖNORM EN 61000-3-1 or in accordance with ÖVE / ÖNORM EN 61400-21.		Р
	The flicker coefficient cwk must be specified in accordance with the requirements of the test standard used. The network impedance or the network impedance angle result from the measurement method. These must be stated in the test report.		Р
	The flicker coefficient $c_{\Psi k}$ is determined for continuous continuous operation without disruptions. The flicker coefficient is to be normalized to the nominal active power. The short circuit power S_k is to be related to a symmetrical short circuit of the test source for three-phase test objects, in the case of single-phase test objects to the single-phase short circuit power.		Р
	For controllable EZE with nominal currents> 75 A, at least 12 measurements of 10 minutes each must be carried out. One measurement each within the 9 performance intervals [0%, 10%], [10%, 20%] to [80%, 90%] related to Pn and three measurements in the interval from 90% Pn to Pn. One measurement consists of determining the short-term flicker strength Pst as a 3-phase (phase L1, L2 and L3). For non-controllable EZE, a tuple must be determined for the adjustable working points and Pn. Alternatively, Pt may be determined for each of the above	The tested PV inverter may be used in EZA with nominal currents> 75 A.	P
	measurements according to ÖVE / ÖNORM EN 61000-4-15		
5.1.3.3	Evaluation method		Р
	The maximum for all Pst should be selected as the value for the long-term flicker strength Pt.		Р

OVE-Richtlinie R 25			
Clause	Requirement - Test	Result - Remark	Verdict
	The flicker coefficient $c_{\Psi k}$ is determined on the basis of the previously measured P_{st} values according to the following formula: $c_{\Psi k} = P_{st} \cdot \left(\frac{S_k}{P_n}\right)$		Р
	It is P_{St} Short-term flicker measured on the network replacement element; S_k Short-circuit power of the network replacement element (during the determination of the corresponding P_{St} values).		
5.1.3.4	Documentation	(See appended table)	Р
	It should be noted: - measuring devices used; - Output voltage of the network simulation; - Reference impedance; - Single-period RMS values of current and voltage; - the largest Cψ _k - value determined; - P _{st} , P _{lt} .		Р
5.1.4	Harmonics and interharmonics		Р
5.1.4.1	General		Р
	These tests serve to demonstrate the requirements of TOR D2, Section 9.2.5.		Р
	The aim of the test is to determine the harmonic and intermediate harmonic currents and the higher-frequency harmonic currents between 2 kHz and 9 kHz (for generating units in systems larger than 75 A).		Р
5.1.4.2	Tests		Р
	 Compliance with the limit values for harmonic currents must be demonstrated as follows: with rated currents of the EZE ≤ 16 A per conductor according to ÖVE / ÖNORM EN 61000-3-2; with rated currents of the EZE> 16 A and ≤ 75 A per conductor according to ÖVE / ÖNORM EN 61000-3-12. for nominal currents of the EZE> 75 A and for EZE, which are intended for EZA with nominal currents>75 A according to ÖVE / ÖNORM EN 61000-4-7: 2010, Appendix A. The measurement of the higher-frequency harmonic currents between 2 kHz and 9 kHz must be in accordance with ÖVE / ÖNORM EN 61000-4-7: 2010, Appendix B. 	(See appended table)	Р
	The measurement according to ÖVE / ÖNORM EN 61000-4-7 may be carried out on a test voltage source of any impedance.		Р
	The harmonic currents or currents of the interharmonics are determined for each 10% active power bin. The center points of the bins are to be chosen close to 0% Pn, 10% Pn, 20% Pn to 100% Pn of the EZE. If it is not possible to approach the aforementioned active power values due to the design, the possible active power values must be approached and measured.		Р

Page 50 of 243 Report No.: 6134610.50

	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	ÖVE / ÖNORM EN 61000-3-12 applies to the measuring method. According to ÖVE / ÖNORM EN 61000-4-7, the time window is ten cycles of the basic frequency. A suitable observation period should be selected in accordance with ÖVE / ÖNORM EN 61000-3-12.		Р
5.1.4.3	Evaluation method		Р
	 The evaluation takes place: with rated currents of the EZE ≤ 16 A per phase according to ÖVE / ÖNORM EN 61000-3-2; with rated currents of the EZE> 16 A and ≤75 A per phase according to ÖVE / ÖNORM EN 61000-3-12; for rated currents of the EZE> 75 A and for EZE, which are intended for EZA with rated currents> 75 A according to ÖVE / ÖNORM EN 61000-4-7: 2010, Appendix B; Every harmonic, intermediate harmonic and every component of higher frequencies of the current is to be arithmetically averaged over the duration of the observation for each active power bin. 		Р
5.1.4.4	Documentation	(See appended table)	Р
	 At least it should be noted: a) measuring devices used; b) for measurements on EZE> 75 A as well as for EZE, which are intended for EZA with nominal currents>75 A additionally: the reference impedance; for each active power bin: the values of the individual current components and the total harmonic distortion in tables as percentages of <i>In</i>; for each active power bin: the values of the individual current components for each phase of the harmonic sub-group according to ÖVE / ÖNORM EN 61000-4-7, the intermediate harmonic group according to ÖVE / ÖNORM EN 61000-4-7, the frequency bands in the range above the 40th harmonic up to 9 kHz according to ÖVE / ÖNORM EN 61000-4-7: 2010, Appendix B. 		P
5.2	Testing the symmetry behaviour of three-phase inverte	ers	Р
5.2.1	General		Р
	This section serves to demonstrate the requirements of the TOR generator, section 6.1.1. These tests do not apply to rotating generators that are directly connected to the distribution network. For all converter-linked systems, only the converter has to be checked.	Three-phase inverter.	P P
5.2.2	Tests		Р
	In the test laboratory, the test must be carried out under symmetrical voltage conditions at nominal voltage and with a symmetrical mains impedance.		Р
	At least 5 measurements at nominal active power and 5 measurements at 50% of nominal active power must be carried out over a period of 1 minute each.		Р

Page 51 of 243 Report No.: 6134610.50

	rage 31 of 243	Roport No.	0134010.30	
OVE-Richtlinie R 25				
Clause	Requirement - Test	Result - Remark	Verdict	
	These measurements must be carried out with the following reactive power specification: - cos φ = 1, - maximally underexcited, and - maximally overexcited. The following tests must also be carried out for	Not communicatively	P N/A	
	communicatively coupled inverters:	coupled inverters.	IN/A	
	 a) Failure of individual inverters The failure of the inverters is to be simulated at time to. At to + 1 minute, the 1-minute mean value of the apparent power must be formed. The following measurements are to be carried out: Maximum value measurement in the event of an inverter failure; Measurements with an inverter failure at 100% nominal active power, cos φ = 1; Maximum value measurement in case of failure of two inverters in different phases: Measurements with failure of two inverters in different phases at 100% nominal active power, cos φ = 1. b) Performance loss of individual inverters The inverters are to be operated with nominal active power and cos φ = 1. On the DC side of the inverters in one phase, the power must be reduced suddenly so that on the AC side, the power value in one phase drops by at least 3.68 kVA + 10%. The drop in power of the inverters must be simulated at time to. At to + 1 minute, the 1-minute mean value of the apparent power must be formed. During the measurements, it must be ensured that the DC source does not limit the performance of the inverters. The measurement must be carried out five times. NOTE 5 The power-limited inverters of one phase can be replaced by a corresponding simulation of the communication device. 		N/A N/A	
5.2.3	Evaluation method		Р	
	The asymmetry for an operating point, characterized by power and cos φ, must be calculated		Р	
	For each of the 5 measurements (1-minute averages) at the respective operating point, the maximum difference between the apparent powers of the three phases is determined. The maximum value is again determined from these 5 values. This maximum value is to be given for the following operating points: a) $100 \% P_n \pm 5 \% P_n \cos \varphi = 1$; b) $100 \% P_n \pm 5 \% P_n \cos \varphi = \text{maximally underexcited}$; c) $100 \% P_n \pm 5 \% P_n \cos \varphi = \text{maximally overexcited}$; d) $50 \% P_n \pm 5 \% P_n \cos \varphi = \text{maximally underexcited}$; e) $50 \% P_n \pm 5 \% P_n \cos \varphi = \text{maximally underexcited}$; f) $50 \% P_n \pm 5 \% P_n \cos \varphi = \text{maximally overexcited}$.		P	
	For communicatively coupled inverters, the maximum asymmetry values from the individual measurements must also be determined.		N/A	

	1 ago 02 01 2+0		010-1010.0
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	The test is passed if the maximum value from the above measurements a) to f) is that in the TOR generator, section 6.1.1. does not exceed the specified limit.		Р
5.2.4	Documentation		Р
	At least it should be noted: - all determined 1-minute averages, - the maximum values from the above measurements, - for communicatively coupled inverters: the maximum values of the 1-minute average values determined during the measurements.		Р
5.3	Test the behaviour of the generating unit on the netwo	rk	Р
5.3.1	General		Р
	Section 5.3 is used to demonstrate the requirements of the TOR generator, Section 5		Р
5.3.2	Measurement of active and reactive power working area ("PQ diagram")		P
	These tests serve to demonstrate the adjustable reactive power range in accordance with the requirements of the TOR generators, Section 5.3.3.		Р
5.3.2.1	Tests		Р
	All tests must be carried out at the specified voltages.		Р
	The EZE is operated in all possible of the following operating points, each operating point being held for at least 60 s after the settling process has subsided. During the partial measurements a) to c) below, the primary energy source must not limit the output.		P
	 The measurements a) to c) are to be carried out at Un, 0.86 Un and 1.09 Un. a) With cos φ = 1, the maximum active power possible at this operating point is set. b) At Q = 43.6% Sn underexcited operation, the maximum active power possible at this operating point is set. c) At Q = 43.6% Sn overexcited operation, the maximum active power possible at this operating point is set. d) With Q = 43.6% Sn underexcited operation, the active power is set to 20% to 30% of the active power determined under a). e) With Q = 43.6% Sn overexcited operation, the active power is set to 20% to 30% of the active power determined under a). f) At Q = 43.6% Sn underexcited operation, the active power is set to 10% to 20% of the active power determined under a). g) At Q = 43.6% Sn overexcited operation, the active power is set to 10% to 20% of the active power determined under a). h) With Q = 43.6% Sn underexcited operation, the active power is set to 0% to 10% of the active power determined under a). i) At Q = 43.6% Sn overexcited operation, the active power is set to 0% to 10% of the active power determined under a). i) At Q = 43.6% Sn overexcited operation, the active power is set to 0% to 10% of the active power determined under a). 	(See appended table)	P

	Fage 33 01 243		0134010.50
	OVE-Richtlinie R 25	T	
Clause	Requirement - Test	Result - Remark	Verdict
5.3.2.2	Evaluation method		Р
	The 1-minute mean value of the active, apparent and reactive power as well as the associated voltage and cos φ value are determined from the measured values for each of the operating points.		Р
	The tests are passed if the active and reactive power range corresponds to the requirements according to the TOR generator, section 5.3.3, depending on the respective power or the type of generating plant (converter based or without converter).		Р
5.3.2.3	Documentation	(See appended table)	Р
	At least it should be noted: - for all measured values from a) to i) for P and S with the associated voltage and cos φ values or reactive power values;		Р
5.3.3	End of active power feed-in after OFF command via telecontrol interface (input port)		Р
	These tests serve to demonstrate the requirements of the TOR generator, Section 5.4.1.		Р
5.3.3.1	Tests		Р
	For this test, the EZE is operated with an active power of at least 20% Pn.		Р
	The command to terminate the active power feed-in is then given via the provided interface (input port) and the time until the actual termination of the active power feed-in is measured.		Р
5.3.3.2	Evaluation method		Р
	The test is passed if the EZE ends the active power feed within 5 s. The criterion is an active power feed-in<5% Pn. NOTE A separation of the EZE from the grid is permissible but not mandatory.		Р
5.3.3.3	Documentation	(See appended table)	Р
	The interface used and the time course of the active power feed-in must be documented.		Р
5.3.4	Active power reduction at overfrequency		Р
	These tests serve to demonstrate the active power reduction of the EZE at overfrequency according to the TOR generator, section 5.1.3. as well as the proof of the active power gradient after reconnection according to TOR generator, section 5.5.2		Р
5.3.4.1	Tests		Р
	The tests to prove the frequency-dependent active power feed-in of the EZE are to be carried out on a network simulator.		Р
	 Alternatively, the tests may be over a) an adjustment of the input signals on the control of the EZE, or b) the limit values (setpoints) are adjusted within the control of the EZE if the manufacturer declares the full functionality of the EZE control and feed at all required operating frequencies (47.5 Hz to 51.5 Hz). 		Р

Page 54 of 243

OVE-Richtlinie R 25			
Clause	Requirement - Test	Result - Remark	Verdict
	The following measuring points a) to g) must be approached (see Figure 3): a) $50,00 \text{ Hz} \pm 0,01 \text{ Hz}$; b) $50,25 \text{ Hz} \pm 0,05 \text{ Hz}$; c) $50,70 \text{ Hz} \pm 0,10 \text{ Hz}$; d) $51,15 \text{ Hz} \pm 0,05 \text{ Hz}$; e) $50,70 \text{ Hz} \pm 0,10 \text{ Hz}$; f) $50,25 \text{ Hz} \pm 0,05 \text{ Hz}$; g) $50,00 \text{ Hz} \pm 0,01 \text{ Hz}$; h) $51,65 \text{ Hz} \pm 0,05 \text{ Hz}$; i) $50,15 \text{ Hz} + 0,01 \text{ Hz}$; j) $50,00 \text{ Hz} \pm 0,01 \text{ Hz}$.	(See appended table)	P
	The same frequency deviations must result from the application of the alternative test procedure by adjusting the limit values. Mains frequency Setpoint specification Tolerance band \$ 51,15 Hz ± 0,05 Hz \$ 50,70 Hz ± 0,10 Hz \$ 50,00 Hz ± 0,01 Hz Figure 3 - Testing active power feed-in at overfrequency (steps a) to g)) NOTE The steps between points a) to j) may also be carried out with a frequency ramp of 1 Hz / s.		P
5.3.4.1.1	Test sequence for controllable or limited controllable EZE		Р
	At $f = 50.2$ Hz, the value of the currently generated active power P _M is "frozen".		Р
	The test is carried out for two services. On the one hand, the test must start with a power > 80% P_n and in a second test with a power between 40% P_n and 60% P_n . In the second test, after freezing the P_M , the available active power output (depending on the primary energy supply, heat output, gas quality, etc.) has to be increased to a value > 80% P_n and after falling below the mains frequency of 50.2 Hz, the increase in the active power gradient has to be recorded.	(See appended table)	P
	Point g) must be held until the EZE feeds in again with the available active power output (depending on the primary energy supply, heat output, gas quality, etc.). The power gradient (dP/dt) of the EZE must be continuously determined during this period. To determine the power gradient, a moving 1-minute average of the active power is calculated, the 1-minute average having to be recalculated from the previous data at least every second.		P

Page 55 of 243

	OVE-Richtlinie R 25	Report No., o	104010.00	
Clause	Requirement - Test	Result - Remark	Verdict	
	The active power gradient is calculated from the 1-minute mean values from the difference between the 1- minute mean value at time t_1 and time $t_1 + 1$ minute as follows: $(\Delta P/1 \text{ min}) = (P_t = t_1 + 1 \text{ min} - P_t = t_1)/1 \text{ min}$ Here t_1 is the time from the start of the active power feed-in of the EZE after reconnection until the end of the power limitation. With step control, the averaging starts at t_1 - 1 minute. The frequency applied to the EZE and the active power must be recorded. The active power output available during the test must be demonstrated.		Р	
5.3.4.1.2	Test sequence for all EZE (adjustable, conditional and non-adjustable EZE)		Р	
	 Following tests a) to g), the following tests must be carried out for all EZE: Start frequency h) and hold it until the EZE has switched off. If the EZE is only designed for use with an external automatic disconnection point and there is therefore no shutdown, a triggering of the external automatic disconnection point for the unit must be simulated for the measurement of the active power gradient after switching on again. In this case the frequency i) may be skipped. Start frequency i) and hold it for at least 7 minutes, then Start frequency j) and keep it at least until the active power settles. 		P	
5.3.4.2	Evaluation method		Р	
	 a) for controllable EZE, if between the aforementioned measuring points b) and f) the active power is reduced with a gradient of 40% of PM (droop of 5%) per Hz with increasing frequency or increases with decreasing frequency, and the maximum active power gradient occurring in points g) and j) is less than 10% of the maximum active power Pn per minute, and the active power value of the target value determined by the gradient characteristic does not deviate by more than +5% Pn. 		Р	
	 b) for conditionally adjustable EZE, if they behave within their control range as in point a), and outside the controllable range, the power fed in when leaving the control range remains constant until it is switched off, the connection time in point j) corresponds to the manufacturer's information on the random generator; c) for non-regulated EZE, if a shutdown between 50.2 Hz and 51.5 Hz takes place within 1 cr 		N/A	
	within 1 s; - the connection time in point j) corresponds to the manufacturer's information on the random generator.			
5.3.4.3	Documentation	(See appended table)	Р	

Page 56 of 243

	1 agc 50 01 245	reperrien	0104010.00
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	At least it must be documented: - Variation of the network frequency over time; - Primary energy supply, heat emission, gas quality, etc.); - the measured active power over time; - the maximum gradient.		Р
5.3.5	Frequency-dependent active power reduction (active power at underfrequency)		Р
	These tests serve to demonstrate the behaviour of the EZE at underfrequency according to the TOR generator, section 5.1.5.		Р
5.3.5.1	Tests		Р
	The EZE is to be operated with an active power output > 80% P _n . The measurements are carried out at the following operating points: a) Nominal frequency ± 0,01 Hz; b) Nominal frequency - 0.5 Hz for synchronous EZE, nominal frequency - 1 Hz for non-synchronous EZE; c) a point between nominal frequency - 2.4 Hz to - 2.5 Hz. Operating points b) and c) must be kept for at least 1 minute.	(See appended table)	Р
5.3.5.2	Evaluation method		Р
	For synchronous EZE: - The test is passed if the EZE does not reduce the power when the mains frequency changes from operating point a) to b) and the power drops by a maximum of 10% P _n per Hz from operating point b) to c).		N/A
	For non-synchronous EZE: - The test is passed if the EZE does not reduce the power when the mains frequency changes from operating point a) to b) and the power drops by a maximum of 2% Pn per Hz from operating point b) to c).		Р
5.3.5.3	Documentation	(See appended table)	Р
	At least it must be documented: - Variation of the network frequency over time; - the measured active power over time.		Р
5.3.6	Voltage-controlled active power limitation P (U)		Р
	These tests from section 5.3.6. serve as proof of the active power reduction in the event of overvoltage according to TOR generator, section 5.3.6		Р

	OVE-Richtlinie R 25	1.000.1.1000.10.10.10.			
Clause	Requirement - Test	Result - Remark Verdic			
	Overvoltage protection Ueff > may be deactivated when testing the voltage-dependent control functions. A fixed $\cos \varphi = 1$ must be set as the reactive power specification. P(U)-Kennlinie 0.8 0.4 0.2 0.9 0.00% 102% 104% 106% 108% 110% 112% 114% Spannung (U/U _s) [%] Bild 4 – Standardkennlinie für P(U) gemäß TOR Erzeuger, Abbildung 14 a)	P			
	A fixed $\cos \varphi = 1$ must be set as the reactive power specification	P			
5.3.6.1	Tests	Р			
	The tests to prove the active power reduction in the event of overvoltage of the EZE are to be carried out on a network simulator.				
	Depending on the type of EZE (single or three-phase), the changes in voltage must be carried out simultaneously or symmetrically on all phases.	Р			
5.3.6.1.1					
	The accuracy of the P (U) control is checked by slowly increasing the mains voltage, starting from a voltage value below the response threshold of 110% $U_{\rm h}$.	Р			

Page 58 of 243 Report No.: 6134610.50

OVE-Richtlinie R 25			
Clause R	Requirement - Test	Result - Remark	Verdict
pr (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)	 Increase the voltage in steps of 1% Un, with a waiting time of at least 30 s between the steps for reaching a steady state; Measurement of U, I, P, Q for at least 30 s; Repetition of g) and h) until a tension of 113% is reached; Lowering the voltage in steps of 1% Un, with a waiting time of at least 30 s between the steps for achieving a steady state; Measurement of U, I, P, Q for 30 s; Repetition of j) and k) until a voltage of 109% Un is reached; Setting the voltage to 100% Un; End of recording (U, I, P, Q); 	(See appended table)	P
5.3.6.1.2 To) Switch off the EZE. Test sequence for the dynamic behaviour of the P (U) ontrol		Р
TI a	The dynamic behaviour of the P (U) control is checked by sudden increase in the mains voltage, starting from a oltage value below the response threshold of 110% Un.		Р
pr a) b) c) d) e)	measurement of U, I, P, Q for a period of at least 10 times the time constant of the P (U) control;) Sudden lowering of the voltage to 109% Un, measurement of U, I, P, Q for a period of at least 10 times the time constant of the P (U) control;) Sudden lowering of the voltage to 100% Un, measurement of U, I, P, Q for a period of at least 10 times the time constant of the P (U) control; Setting the voltage to 100% Un; End of recording (U, I, P, Q);	(See appended table)	P

Page 59 of 243 Report No.: 6134610.50

					/E-Richtlinie R 25		0104010.00
Clause	Requi	irement -	Test		_ ROTALINO IX ZO	Result - Remark	Verdict
O.G.G.G	1.1090					1 Troom Troman	Volume
		Table 1 -	· ·	Specification	avior of the P (U) control		Р
	Step	Time	Voltage (% U _n)	of primary power or active power	Comment		
	1 (d) I	r ₁ = 0	100 %	> 90 % P _n	EZE in operation; Start of recording		
		$t_2 = t_1 + 50 \text{ s}$	109 %	> 90 % P _n	P (U) control may not yet respond		
	- (7	$t_3 = t_2 + 50 \text{ s}$	113 %	> 90 % P _n	P (U) control regulates power to 0 or the minimum possible power.		
	1 (0)	$t_4 = t_3 + 50 \text{ s}$ $t_5 = t_4 + 50 \text{ s}$	109 %	> 90 % P _n	P (U) regulation canceled		
		r ₆ = r ₅ + 50 s	100 %	> 90 % P _n	End of recording		
5.3.6.2	Evalu	ation me	thod				Р
	– th 5. ar U	ne active .3.6.2.1 (3 re within to n of the s	power valu 30 s mean the toleran pecified P	es measur values) in ce band of (U) charac			Р
	time paccor durati behave	orofile of toding to 5. for within viour of a issible tol	the active 3.6.2.2 is the tolera n equivale lerances a	power during the control of the cont	ed if the determined ing the measurement entire measurement that result from the ment (1 st order filter). On for the active power		P
	 The tolerance bands are calculated according to Table 2 There are no discontinuities in the characteristic curve, fluctuations in power or a shutdown of the EZE; It is possible to limit the active power to a power of <10% Pn or to the minimum power specified by the manufacturer. Table 2 - Calculation of the tolerance bands for evaluating the dynamic behavior of the P (U) control in the event of a setpoint jump from an active power P1 to an active power P2 						P
	Active incre P2>	power Lc	ower tolerance band:	for all $t: P_2 - (P_2 - P_1)$ for $t < 3 \text{ s}: P_1 - 0.10$ for $t \ge 3 \text{ s}: P_2 - (P_2)$ for $t < 3 \text{ s}: P_1 + 0.10$	- P _n - P ₁) · e ^([-t+3s]/Tau) - 0.10·P _n		
	decre	× P ₁	ower tolerance band:		- P ₁) · e ([-1+3s]/Tau) + 0.10 · P _n		
5.3.6.3	Docu			ror all <i>t</i> : P₂− (P₂ − P	1) · e ^(-t/Tau) - 0.10 · P _n	(See appended table)	P
0.0.0.0	Documentation Examination of the static-steady-state behaviour: Tabular representation of the mains voltage and active power (30 s mean values) as well as the determined tolerance limits; Checking the dynamic behaviour: Graphical representation of the measured mains voltage and active power (200 ms mean values) as well as the calculated tolerance bands for the active power over time.					(Occ appended table)	P
5.3.7	React	tive powe	er control a	ccording to	setpoint "cos φ fixed"		Р
	contro	ol strateg			ne reactive power ding to the TOR		Р
5.3.7.1	Tests						Р
	opera havin	iting point g to be re	ts, with a c ecorded for	lata set wit each oper	of the following h 30 s averaging rating point after the has subsided.		Р

	Page 60 of 243	Report No.:	6134610.50
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	During the following partial measurements a) to b), the primary energy source must not limit the output. The measurements a) to b) must be carried out at 0.91 Un, Un and 1.09 Un.		Р
	For each of the measurements at different voltages, a different value between 40% Pn and 60% Pn must be approached.		Р
	 The cos φ to be set must be determined in accordance with the TOR generator, Section 5.3.3.2. a) At a minimum cos φ overexcitation occurs with an active power value between 40% P_n and 60% P_n, and measured at S_n. b) With minimal cos φ underexcitation with an active power value between 40% P_n and 60% P_n, and measured at S_n. 	(See appended table)	P
5.7.3.2	Evaluation method		Р
	The test is passed if all $\cos \varphi$ values (30 s mean) do not deviate from the specification by more than \pm 0.01.		Р
	In the case of EZE with generators directly connected to the grid, which cannot regulate reactive power due to the principle, such as asynchronous generators, and therefore use non-controllable fixed capacitances, the tolerance band increases from 0.01 to 0.02. This device type is only evaluated at U _n .		Р
5.3.7.3	Documentation		Р
	 At least it must be documented: Tabular representation of all measuring points from 5.3.7.2 a) or b) for P, Q, U, cos φ values as a 30 s mean value; graphic representation of all measuring points from 5.3.7.2 a) and b) for P, Q, U, cos φ as 30 s mean; Pass / fail for the adjustable cos φ range and possibly restrictions for the use of the EZE in EZA with higher performance. 	(See appended table)	P
5.3.8	Reactive power control "cos φ (P)"		Р
	These tests serve to demonstrate the reactive power control "cos φ (P)" according to the TOR generator, section 5.3.4.1		Р
5.3.8.1	Tests		Р
	To check the standard characteristic curve for $\cos \phi$ (P) shown in TOR generator, Figure 12, the change in reactive power must be checked in accordance with the level of the active power feed-in. For this purpose, the active power range must be traversed three times from 20% P_n to the maximum active power feed-in and vice versa.		P

	Page 61 of 243	Report No.: 6	134010.30
	OVE-Richtlinie R 25	,	
Clause	Requirement - Test	Result - Remark	Verdict
	 a) The active power range is traversed once in steps of 10% Pn to demonstrate the level of the displacement factor. b) The active power range is run through twice in the steps 20% Pn, 50% Pn, 90% Pn to prove the amount of the displacement factor and to demonstrate the settling time. 		Р
	The active power jumps must be carried out at the highest rate of change, limited by the generator power of the EZE. The measurement data are recorded as 200 ms average. The active power steps are to be approached with an accuracy of ± 5% P _n		Р
5.3.8.2	Evaluation method		Р
	To pass the test 5.3.8.1 a), the stationary final value of the cos ϕ must be within the limit deviation of \pm 0.01 cos ϕ around the cos ϕ setpoint resulting from the active power. The final value is determined as a 30 s average.		Р
	To pass the test 5.3.8.1 b), the cos ϕ setpoint resulting from the active power must be set at the terminals of the EZE within a settling time of 10 s. The measurement of the settling time begins when the active power enters the band for the first time by \pm 1% of the final value reached. The final value reached is determined as a 30 s average. The settling time ends with the last entry of the cos ϕ value in the tolerance band of \pm 0.02 cos ϕ around the setpoint calculated from the final value of the active power.		Р
	If $\cos \varphi$ noise is superimposed due to island grid detection and the tolerance band \pm 0.02 $\cos \varphi$ is violated by the setpoint after settling due to this noise, then this interference can be neglected by island grid detection. The behaviour of the island grid detection in the steady state without a jump in active power with the same temporal resolution is to be shown as proof of this negligibility.		Р
5.3.8.3	Documentation	(See appended table)	Р
	For each change in active power, the following is to be stated in a table: - Final value of active power; - Setpoint of cos φ; - Settling time; - Assessment of compliance with the tolerance band.		Р
5.3.9	Reactive power control according to setpoint "Q fix"		Р
	These tests serve to demonstrate the reactive power control strategy "Q fix" according to the TOR generator, clause 5.3.4. According to the TOR generator, these measurements are only required for EZE for operation in EZA with a S _r higher than the threshold value defined in the TOR generator.		Р
5.3.9.1	Tests		Р
	The EZE is operated in all possible of the following operating points, with a data set with 30 s averaging having to be recorded for each operating point after the settling process of the active power has subsided.		Р

Page 62 of 243 Report No.: 6134610.50

	Page 62 of 243	Report No.: 6	134010.30
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	During the following partial measurements a) and b), the primary energy source must not limit the output.		Р
	Measurements a) and b) must be carried out at 0.91 U_n , U_n and 1.09 U_n .		Р
	For each of the measurements at different voltages, a different value between 40% P _n and 60% P _n must be approached.		Р
	The maximum value to be set for Q overexcited or underexcited must be defined in accordance with TOR generator, section 5.3.3.2. a) At maximum Q, overexcitation occurs at an active power value - between 40% P n and 60% P _n , and - measured at S _n . b) At maximum Q, under-excitation occurs at an active power value - between 40% P _n and 60% P _n , and - measured at S _n .		Р
5.3.9.2	Evaluation method		Р
	The test is passed if all Q values (30 s average) do not deviate from the specification by more than ± 4% S _n .		Р
	In the case of EZE with generators directly connected to the grid, which cannot regulate reactive power due to the principle, such as asynchronous generators, and therefore use non-controllable fixed capacities, the tolerance band extends from \pm 4% P_n to \pm 10% P_n . This device type is only used at U_n rated.		N/A
5.3.9.3	Documentation	(See appended table)	Р
	At least it should be noted: - Tabular representation of all measuring points from 5.3.9.1 a) or b) for P, Q, U, as a 30 s mean value; - graphical representation of all measuring points from 5.3.9.1 a) and b) for P, Q, U, as 30 s mean. Pass/fail for the adjustable Q range and possibly restrictions for the use of the EZE in EZA with higher performance		Р
5.3.10	Voltage-controlled control functions (reactive power control Q (U) and active power control P (U))		Р
	These tests serve to demonstrate the reactive power control strategy Q (U) and active power control strategy P(U) according to the TOR generator, Section 5.3.4.2 and Section 5.3.6.		Р
	To check the behaviour of the Q (U) control, the time constant or the response time of the Q (U) control must be defined according to a first-order filter (PT1 element) with a time constant Tau of 3 s (deviating from the standard setup). Overvoltage protection U _{eff} > may be deactivated when testing the voltage-dependent control functions	The setting value of a time constant Tau of 3 s for Q (U) control and Tau of 5 s for P (U) control when performed this test. (See appended table)	Р
5.3.10.1	Tests		Р
	The tests to prove the voltage-controlled regulation are to be carried out on a network simulator.		Р

	Page 63 of 243	Report No.: 6	6134610.50
	OVE-Richtlinie R 25		
Clause R	Requirement - Test	Result - Remark	Verdict
po W	The tests are to be carried out at nominal power and at a ower of 20% of the nominal power of the EZE. Vith only partially controllable EZE, the minimum possible utput can be set instead of 20% Pn.		Р
Fe te	or generating plants with P_{min} <20% P_n , an additional est between P_{min} and 20% P_n is required. P_{min} is the minimum possible power of the EZE in feed-in peration.		Р
D ch	Depending on the type of EZE (single or three-phase), the hanges in voltage must be carried out simultaneously or ymmetrically on all phases.		Р
	est procedure for static-stationary behaviour		Р
(va In po (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)	time of at least 30 s between the steps for reaching a steady state; Measurement of U, I, P, Q for 30 s; Repetition of e) and f) up to 113% <i>U</i> _n ; Lowering the voltage in steps of 1% U _n , with a waiting time of at least 30 s between the steps for achieving a steady state; Measurement of U, I, P, Q for at least 30 s; Repetition of h) and i) up to 85% <i>U</i> _n ; Increase the voltage in steps of 1% U _n , with a waiting time of at least 30 s between the steps for reaching a steady state;	(See appended table)	Р

		Page 64 of 243	Report No.: 6	134610.50
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict
	The following measurements o) minimum active power < 20% Property o) Setting the voltage to 91% Upmin, with a waiting time of a steady state; p) Measurement of U, I, P, Q for a linerease the active power in waiting time of at least 30 stractive a steady state; r) Measurement of U, I, P, Q for a linerease the active power in waiting time of at least 30 stractive a steady state; r) Measurement of U, I, P, Q for a linerease the active power a waiting time of at least 30 achieving a steady state; u) Measurement of U, I, P, Q for a linerease the voltage to 109% least 30 s to reach a steady x) Repetition of steps p) to v); y) End of recording (U, I, P, Q) z) Switch off EUT.	In and active power to t least 30 s to reach a or at least 30 s; steps of 5% Pn, with a petween the steps to or at least 30 s; t least 20% Pn is reached; er in steps of 5% Pn, with a between the steps for or at least 30 s; the minimum active power Un, while waiting for at state;	(See appended table)	P
5.3.10.1.	Test procedure for dynamic beh	aviour		Р

Page 65 of 243 Report No.: 6134610.50

				0	VE-Richtlinie R 25		
Clause	Rec	uirement -	Test			Result - Remark	Verdict
	abruvolta a) b) c) d) e) f) g) h) i) j) k) l) m) o) p) q) r) s) t) u)	uptly varying age. Mains volta Switch on E Primary ento > 90% P Start record Increase the for at least Increase the for at least Increase the for at least Lowering the Wait until p U, I, P, Q for Increasing setpoint EL After reach least 30 s; Lowering the setpoint EL Lowering the setpoint EL Lowering the S% Un. Me Lowering the S% Un. Me Lowering the Some until p U, I, P, Q for Setting the setpoint EL achieved; Increase the for at least Increasing End of records.	g the maing the maing the maing the maing the primary experiment or at least primary experiment or at least primary experiment to primary experiment or at least primary experiment or at	ins voltage in; in (or setting in, P, Q), 200 in to 104% I in to 109% I in to 109% I in to 109% I in to 109% i	eved; Measurement of Pn (or setting power sure U, I, P, Q for at easuring U, I, P, Q for a ln, measuring U, I, P, Q nimum mains voltage P, Q for at least 30 s;		P
	Step		Yoltage (% Un)	Specification of primary power or	or of the Q (U) control		Р
	1 2	$t_1 = 0 \text{ s}$ $t_2 = t_1 + 30 \text{ s}$	100 %	> 90 % P _n	EZE in operation; Start of recording		
	3	t ₃ = t ₂ + 30 s t ₄ = t ₃ + 30 s	109 %	> 90 % P _n > 90 % P _n	Checking the Q (U) behavior		
	5	t ₅ = t ₄ + 30 s	109 %	> 90 % P _n	Checking the correct interaction of Q (U) and P (U)		
	6	$t_6 = t_6 + 30 \text{ s}$ $t_7 = t_6 + 30 \text{ s}$	109 %	P _{min} > 90 % P _n	Checking the Q (U) behavior when the active power changes		
	8	t ₈ = t ₇ + 30 8	100 %	> 90 % Pn	Checking the Q (U) behavior		
	9	t ₉ = t ₈ + 30 s	91 %	> 90 % P _n	Checking the Q (U) behavior Testing the Q (U) behavior at voltages below		
	10	$t_{10} = t_9 + 30 \text{ s}$ $t_{11} = t_{10} + 30 \text{ s}$	85 % 85 %	> 90 % P _n	90% Un		
	11	$t_{12} = t_{11} + 30 \text{ s}$ $t_{12} = t_{11} + 30 \text{ s}$	85 % 85 %	> 90 % P _n	Checking the Q (U) behavior when the active power changes		
	13	t ₁₃ = t ₁₂ + 30 s	91 %	> 90 % P _n	Observation than O. (15.5.)		
1 1	14	$t_{14} = t_{13} + 30 \text{ s}$ $t_{15} = t_{14} + 30 \text{ s}$	97 %	> 90 % P _n > 90 % P _n	Checking the Q (U) behavior		

Page 66 of 243 Report No.: 6134610.50

	0.75 0.141.1 0.05		
	OVE-Richtlinie R 25		Т
Clause	Requirement - Test	Result - Remark	Verdict
	Evaluation method		Р
	 The examination of inpatient behaviour is passed if the 30 s mean values of the reactive power values measured in stationary operation measured according to 5.3.10.1.1 are within the tolerance band of ± 4% Sn and ± 1% Un of the set Q (U) characteristic. in the power range Pmin to 20% Pn the time course of the reactive power is steady and at P=0 the reactive power approaches 0. Compliance with the tolerance band of ± 4% Sn is not required in this active power range. 		Р
	 The dynamic behaviour test is passed if the time curve of the reactive power during the measurement according to 5.3.10.1.2 for powers greater than 20% Pn is within the tolerance bands that result from the behaviour of an equivalent PT1 element (1st order filter). Permissible tolerances for the reactive power values are ± 4% Sn and for the time + 1 second. 		Р
	 The tolerance bands are calculated according to Table 6. There are no discontinuities in the characteristic curve, no persistent vibrations (after the end of the transient process after 5 Tau) of the reactive power and no disconnections of the EZE occur; At the transition to active powers <20% Pn there are no sudden changes in reactive power. With changes in active power between 0% and 20% Pn, the reactive power must behave continuously. 		Р
	When assessing the setpoint jump from step 3 to step 4, the active power must be assessed according to the tolerance bands in Figure 18. The accuracy of the reactive power does not have to meet a tolerance band for active powers below 20% S _n . Check whether the course is steady and does not jump. If P = 0, the reactive power must go to zero.		Р
	Documentation	(See appended table)	Р
	 At least it must be documented: Setting values of the P (U) and Q (U) characteristics and time constants or setting times; Calculated tolerance bands for active and reactive power over time; Examination of the static-steady-state behaviour: Tabular representation of the measured grid voltage, active and reactive power (30 s mean values) as well as the calculated tolerance limits; Checking the dynamic behaviour: Graphical representation of the measured grid voltage, active and reactive power (200 ms mean values) as well as the calculated tolerance bands for the reactive power over time. 		Р
	Protection of the settings as requested by the TOR generator		Р

Page 67 of 243

	OVE-Richtlinie R 25	перитно о	101010100
Clause	Requirement - Test	Result - Remark	Verdict
	This section serves as evidence of the requirements in TOR generators, section 6.2.3. These requirements only apply to inverters.		Р
5.3.11.1	 The test has been passed if: in the above mentioned measuring points 5.4.5.1 a) to g) and j) the expected active power output, after swinging, with a deviation of ≤ ±10% P_{Emax}. Deviations caused by the maximum discharge power being small P_{Emax} are permitted. In the measuring points h) and i) no action power may be output. the initial time delay is T_V of the frequency-dependent adjustment of the active power output of ≤ 2 s, the start-up time of the adjustment of the active power output is a maximum of 1 s and the settling time of the adjustment of the active power output is not more than 20s and the switching time in j) is at least 60 s and the power is then increased with a gradient of 10% P_{Emax} / min. 		P
5.3.11.2	Evaluation method		Р
	The test is passed if the corresponding parameters or settings cannot be changed by the user or by means of aids accessible by the user.		Р
	The test is passed if the parameters or settings are not changed by software updates.		Р
5.3.11.3	Documentation	(See appended table)	Р
	The type of documentation for the protection of the corresponding parameters or settings must be documented.		Р
5.4	Testing the automatic activation point		Р
	A separate activation point must be tested together with a suitable generator. It must be ensured that the switch-off signal is not generated by the generator, but by the activation point		Р
	The measurements may be carried out with the exception of testing the entire impact chain with the EZE switched off.		Р
	With the help of the network simulator, a symmetrical three-phase network with nominal frequency and nominal voltage is simulated. Single-phase measurements are allowed for single-phase EZE		Р
	 The measurement is carried out on a network simulator: At central isolating points, the switching output for the connection of a tie switch is monitored. An integrated, automatically acting disconnection point in EZE <30 kVA can usually be checked in normal operation. Operation at nominal active power is not necessary. The opening of the internal tie switches is monitored. 		Р

Page 68 of 243 Report No.: 6134610.50

	1 ago 00 01 240	•	
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	An integrated automatic activation point in EZE may not be checked during normal operation. If testing is carried out with the EZE switched off, the release signal for the protection of the tie switch must be made available for the measurement. The release signal of the automatic activation point is monitored. When assessing the switch-off time, the own times of the tie switch and the control must be taken into account.		Р
5.4.2	Voltage protection devices		Р
	To check the voltage monitoring, the automatic disconnection point must be operated via an AC voltage source with variable amplitude at nominal AC voltage and any power.		Р
5.4.1.1	Tests		Р
5.4.1.1.1	Testing the overvoltage protection U _{eff} >> and the undervoltage protection U _{eff} < and U _{eff} <<		Р
	a) For the measurement of the phase-phase voltages, the phase angle must be adjusted so that one phase-phase voltage reaches the limit value, whereby the phase-neutral conductor voltages for the overvoltage test to 110% Un and for undervoltage to 90% Un be set.		Р
	b) To measure the phase-neutral voltage, one phase- neutral voltage must be changed, whereby the other two phase-neutral voltages are kept at the nominal voltage. This test must be carried out individually for each phase.		Р
	 Proceed as follows for the test: By slowly reducing or increasing the mains voltage up to the limits set in accordance with the TOR generator, Section 6.3.3.1, the voltages that result in the automatic disconnection point being switched off are determined. The undervoltage protection Ueff < may be deactivated for testing the undervoltage protection Ueff <<. By suddenly changing the mains voltage to the set value according to the TOR generator, section 6.3.3.1 + 3% Un for overvoltage or -3% Un for undervoltage, the time until the automatic disconnection point is switched off is determined. The specified tripping delay must be observed in the event of voltage jumps in which the set trigger values for the overvoltage are exceeded by a maximum of 3% of the nominal voltage Un or the undervoltage is not exceeded by more than 3% of the nominal voltage Un. 	(See appended table)	P
	All tests for the detection of the switch-off values and switch-off times must be carried out three times.		Р
5.4.1.1.2	Testing the overvoltage protection U_{eff} > with monitoring of the moving 10-minute average. (monitoring of the voltage quality)		Р
	To avoid triggering the overvoltage protection U _{eff} >>, deactivate it when carrying out the tests.		Р

Page 69 of 243

	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	 The voltage surge protection U> is tested as follows: a) The voltage is set to 100% Un and maintained for 600 s. The voltage is then set to 113% Un. It must be switched off within 600 s. b) The voltage is set to Un for 600 s, then to 109% Un for 600 s. It must not be switched off. c) The voltage is set to 107% Un and maintained for 600 s. Then the voltage is set to 115% Un. It must be switched off within 300 s. 	(See appended table)	P
	The test is carried out on any phase neutral voltage V % U Messung a		P
5.4.1.2	Evaluation method		Р
	The test of overvoltage protection $U_{\text{eff}} >>$ and undervoltage protection $U_{\text{eff}} <$ and $U_{\text{eff}} <<$ is considered passed if the determined voltages that lead to a shutdown are within a tolerance band of \pm 1% U_{n} around the setting values and if the determined tripping delay is within \pm 100 ms of the set trigger delay.		Р
	The test of overvoltage protection U_{eff} > is considered passed if the conditions specified in 5.4.1.1.2 a) to c) are met.		Р
5.4.1.3	Documentation	(See appended table)	Р

Page 70 of 243

	1 age 70 of 240	Report No.:	0104010.00
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	 At least it must be documented: Settings of the activation point (setting values, tripping delays); Measured trigger values and trigger times for each individual test; Deviations between setting and trigger values. 		Р
5.4.2	Frequency protection devices		Р
5.4.2.1	Tests		Р
	To check the frequency monitoring, the automatic disconnection point must be operated at any power via an AC voltage source with variable amplitude and frequency.		Р
	The tripping frequencies and the tripping times of the frequency monitoring are determined by reducing or increasing the mains frequency with a rate of change of 1 Hz/s up to the setting values defined in accordance with TOR generator, Section 6.3.3.1.		Р
	All tests for the detection of the switch-off values and switch-off times must be carried out three times.		Р
5.4.2.2	Evaluation method		Р
	The entire test is considered to have been passed if the values for frequencies and the switch-off times measured in each individual test are within the limits specified in TOR generators, Section 6.3.3.1. The deviations between the setting and trigger values may be those in TOR generator, section 6.3.2. Do not exceed the specified tolerance.		Р
5.4.2.3	Documentation	(See appended table)	Р
	 At least it must be documented: Settings of the activation point (setting values, tripping delays); Measured trigger values and trigger times for each individual test; Deviations between setting and trigger values. 		Р
5.4.3	Detection of unwanted island operation		Р
	Detection of undesired island operation must be demonstrated in accordance with the procedure defined in ÖVE / ÖNORM EN 62116.	(See appended table)	Р
5.5	Testing the connection conditions and synchronization	n	Р
	This section serves to demonstrate the requirements of the TOR generator, section 5.5.2		Р
5.5.1	Tests		Р

Page 71 of 243 Report No.: 6134610.50

	Fage 71 01 243		134010.30
	OVE-Richtlinie R 25		T
Clause	Requirement - Test	Result - Remark	Verdict
	The connection and synchronization are carried out or monitored by at least one suitable device. This device can be implemented in the control of the EZE or in the automatic activation point (integrated or external) and is according to the TOR generator, section 5.5.2. set and check as follows: a) The manufacturer must provide the test laboratory with documentation on the functions implemented in the component. b) If the EZE is not switched on, the test is carried out by changing the set nominal frequency and nominal voltage in the control. Alternatively, other methods such as a network simulator or a test bench test may be used for the verification.		P
	Test procedure: a) f _{ist} < 47,45 Hz: no reconnection allowed; b) Change on f _{ist} ≥ 47,55 Hz: reconnection possible; c) f _{ist} > 50,15 Hz: no reconnection allowed; d) Change on f _{ist} ≤ 50,05 Hz: reconnection possible; e) U _{ist} < 84 % U _n : no reconnection allowed; f) U _{ist} ≥ 86 % U _n : reconnection possible; g) U _{ist} > 110 % U _n : no reconnection allowed; h) U _{ist} ≤ 108 % U _n : reconnection possible. The switch-on time must be specified by the manufacturer.	(See appended table)	Р
5.5.2	Evaluation method		Р
	The test is passed if the EZE or the automatic activation point can only be activated within the tolerance bands according to the TOR generator, Section 5.5.2 and after the voltage and frequency have remained within the tolerance bands after 300 s at the earliest.		Р
5.5.3	Documentation	(See appended table)	Р
	It must at least be documented: - Settings of the EZE or the activation point for the connection conditions (setting values, times); - Measured threshold values and activation times for reactivation for each individual test.		Р
5.6	Testing of robustness and dynamic network support		Р
5.6.1	General		Р
	These tests serve to demonstrate the requirements of the requirements regarding robustness and dynamic network support according to TOR generators, Section 5.2.		Р
	The aim of these tests is to determine whether the test specimen is able to ride through voltage dips undamaged and to behave accordingly. The device under test can be a generation unit (EZE) or a storage system.		Р
	The test item includes: - The control system and the auxiliary units including the self-supply installed in the EZE - The generator (synchronous or asynchronous generator) or the converter - Synchronous and asynchronous generators, which are coupled directly or via converters		Р

		OVE-R	Richtlinie R 25	·	
Clause	Requirement - Test			Result - Remark	Verdict
	Passing through seve the subject of the test. however, be repeated with a fixed or variable passage of multiple ne	The tests listed before any sequence pause time in order.	elow can, of network faults		Р
5.6.2	Method				Р
	The device under test downstream test facility downstream network sable to simulate the condescribed in the following side.		Р		
	The correct parameter order to obtain the res Table 8 and Table 9, ridle test (each separat The value to be set in resultant smallest con based on the nominal		Р		
	The tests are to be sta	arted at a voltage		Р	
	± 5% Un. The reference points for the dynamic network support of the EZE or the storage system are the network-side connection terminals of the device under test.				Р
	It must be tested at ful partial load range from value is the measured immediately before the	I load (Pn ± 2% Pn n 0.2 Pn to 0.6 Pn. active power as a		Р	
	Tests 1 to 3 from Tabl must be carried out be asymmetrically (accor Bollen, see Appendix	e 8 and Tests 1 to oth symmetrically ding to fault patte		Р	
	The FRT tests are car according to Table 6a asymmetrical tests, the must be tested again assignment according		Р		
	Single-phase EZE are for fault type D1. For f made at terminals V a	connected to terrault type D2, the		Р	
	Table 6a - Normal pin assignment (fault type D1) for testing dynamic network support				Р
		Test facility	Test item		
		U	L1		
	Terminals	V	L2		
		W	L3		

				Pa	ge	73 d	of 2	243	}		Report N	o.: 6134610.5
			0/	/E-	Ric	htlir	nie	R 2	25			
Clause	Requi	rement - Test									Result - Remark	Verdict
	Table 6	6b - Cyclically excha testing dy	anged pin assi namic networ				ılt ty	ype	D2	2) for		Р
			Test facility		Т	est i	tem					
			U			L3			1			
		Terminals	V			L1			1			
			W			L2	!					
	occurs 0.85 L least a	ecording must standard s. After an fault ending $J_n \le U \le 1,1 U_n$, the another 60 s.	xplanation (v	olta g mi	age ust	in t con	the	ra ue	nge for	е		Р
	In the case of two successive test runs per test, the network fault must be run through completely so that the test is passed.										P	
	relatio accred EZE b	is no normative in nship between te dited test laborate etween test and ed in either hard	est and test r ory ensures a test repetitio	epe and n h	etiti co as	on it Infiri	f th ms	e tha				P
5.6.3	Tests											P
		Table 7 - Signals and	values for the dyna	mic g	rid sı	ıpport	test					Р
		Recorded signals		Pro	ocessi	ng		Av	eragir	ng		'
	Formul a charact ers	Importanc	е	Instantaneous	RMS values	Symmetrical components	N	blockweise	sliding	Averaging period		
	u ₁ , u ₂ , u ₃	Phase to neutral voltages		х			Х					
	i ₁ , i ₂ , i ₃	Conductor currents		X			X					
	P _{soll}	Setpoint signal	D) ()	X			X					
	I _{DC}	DC voltage (converter systems and		X			X					
	P _{prim}	Primary energy supply (only supply DC link accessible for measuremen	-dependent EZE without	×			x					
		Calculated signals						,				
	I _w	Voltage Active current		\vdash	\vdash	X	\vdash	X		20 ms		
	I _b	Active current Reactive current				X		x		20 ms		
	P P	Active power			\vdash	X	\vdash	x		20 ms		
	Q	Active power Reactive power			\vdash	X	\vdash	x		20 ms		
	P _{DC}	Available DC power (converter syst	ems and PV/		x	^	\vdash	X		20 ms		
	fault	Time of entry error	and ry	x	^		x	^		20 1115		
	fault f _{cleat}	Time of misstatement		X	\vdash		X					
		are to be displayed in accordance with	#		ш							

Page 74 of 243

					E-Richtli		5		010-010.00
01	T	· .	- ,		E-RICHUI	nie R Z	ວ	D 1: D 1	
Clause	Requ	irement - T	est					Result - Remark	Verdict
		and asyncl	hronous g	be carried of generators:	•		nous	Not synchronous generator.	N/A
	Test	Dip depth p.u.	Fault type	Fault duration ms	Load	Reactive power before the test in	Test number		
	1	0,30 0,40	3-phase (type A)	≥150	Full load Partial load	<i>QIP</i> _{rE}	1.1		
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2-phase (type D)		Full load Partial load		1.3		
	2	0,75 0,85	3-phase (type A) 2-phase	at U = 0,75 ≥ 400 at i U = 0,85 ≥ 950	Partial load Full load	0 to ±10 %	2.1 2.2 2.3		
			(type D) 3-phase (type A)		Partial load Full load		2.4 3.1		
	3	0,85 0,90	2-phase (type D)	≥ 60 000	Partial load Full load Partial load	0 to ±10 %	3.2 3.3 3.4		
		ronous Ez	ZE:	be carried o				(See appended table)	Р
	Test	Dip depth	Fault type	Fault duration	Load	Reactive power specificatio n before the test in	Test number		
	1	0,15 0,25	3-phase (type A) 2-phase (type D)	At 0,15 pu ≥ 150 At 0,25 pu ≥ 250	Full load Partial load Full load Partial load	<i>QIP</i> _{rE} 0 to ±10 %	1.1 1.2 1.3		
	2	0,50 0,60	3-phase (type A) 2-phase (type D)	At 0,5 pu ≥ 840 At 0,6 pu ≥ 1020	Full load Partial load Full load	0 to ±10 %	2.1 2.2 2.3		
	3	0,85 0,90	3-phase (type A) 2-phase (type D)	≥ 60 000	Partial load Full load Partial load Full load	0 to ±10 %	3.1 3.2 3.3		
5.6.4	Fyalu	ation crite			Partial load		3.4		Р
		viour durin		work fault					P
	- N bi tii - N in ne ev	o separation of the consynchronic either an etwork fau ZE below vent of a venerating courrence onductor 2	on of the che EZE of disconnection on the control on the control of the control o	EZE from the lisconnects are must be its and men a reactive coltage at the its requirem or the fedor the mem are diage dip/riserated curre	from the document of the document of the termination of the terminatio	e netwonented. nust not uring a als of the net if, in the of the phase	ork, the feed ne the e r the		P
		o more tha viour after							Р
	- N th - S m - N	o separatione fault; ynchronounaximum 6	on of the is units: R s; onous uni	EZE within tise time of its and men	the activ	e pow	er	Rise time of the active power less than 1 s.	P

Page 75 of 243 Report No.: 6134610.50

	Page 75 of 243	Report No.: 6	134610.50
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
5.6.5	Documentation	(See appended table)	Р
	 Necessary information: Calculation method for the rms values, power and displacement factor; Description of the measurement technology, test equipment and the device under test. The description of the test facility must describe the complete operating principle, especially with a view to the correct consideration of the network-side interactions; Voltage level at which the grid fault is generated; Short-circuit power of the test facility at the generator terminals; If changes have been made to the device under test to ensure its functionality during the test, these must be clearly described; Measuring point of the recorded currents and voltages; NA protection settings; Relevant FRT parameters of the EZE or the storage system (for synchronous units, for example AVR setting). 		P
	Diagram:		Р
	For each of the tests, the following diagrams are shown as time courses from t ₁ - 1 s (one second before the fault occurs) to t ₂ + 6 s (six seconds after the fault has been explained), possibly zoomed:		Р
	No load tests: - Phase-phase voltages and phase-neutral voltages (signal curves); - RMS full-period values of phase-neutral voltages with a recalculation rate of at least 1 / ms.		Р
	 Tests with the device under test: Phase-phase voltages and phase-neutral voltages (signal curves); Line currents (waveforms); RMS full-period values of phase-neutral voltages with a recalculation rate of at least 1 / ms; Full-period RMS values of the line currents with a recalculation rate of at least 1 / ms (if necessary, additionally divided into active and reactive components; Active power and reactive power in the co-system with a recalculation rate of at least 1 / ms; Voltage and current in the co-system with a recalculation rate of at least 1 / ms 		P

Page 76 of 243

				OV	'E-Richtlinie R	25		
Clause	Requir	em	ent - Test				Result - Remark	Verdic
			ving must be st					Р
		No.	Parameter	Phase reference	Reference time	value [Unit]		
		0	Test number	-	-	-		
		1	Date	-	-	[dd.mm.yyyy]		
		2	Time (start of exam)	-	-	[hh:mm:ss.f]		
		3	Type of error (affected phases)	-	-			
		4	Setpoint depth of penetration	Outer	_	[p.u]		
	general			conductor	_			
	informati on	5	Burglary duration setpoint Time of entry error (r ₁)	Total	_	[ms]		
		7	Time of misstatement (t ₂)	Total	_	[ms]		
		8	Error duration determined from empty test	Total	-	[ms]		
		9	Voltage dip depth or voltage	Total	t ₁ +100 ms to t ₂ and			
		10	increase determined from the empty test	Mitsystem	t ₁ - 10 s to t ₁	[p.u.]		
		11	Voltage	Phase-neutral voltage	t ₁ - 10 s to t ₁	[p.u.]		
		12	Current	Mitsystem	$t_1 - 500 \text{ ms to } t_1 - 100 \text{ ms}$	[p.u.]		
	before burglary	13	Active power	Total	t ₁ - 10 s to t ₁	[p.u.]		
	< 4	14		Mitsystem	t ₁ - 10 s to t ₁	[p.u.]		
		15	Reactive power	Mitsystem	t ₁ - 10 s to t ₁	[p.u.]		
		16		Total	$t_1 - 10 \text{ s to } t_1$ $t_1 - 10 \text{ s to } t_1$	[p.u.]		
		18	cos φ Voltage	Phase-neutral	t ₁ + 100 ms to t ₂ - 20 ms	[p.u.]		
				voltage	t ₁ + 60 ms			
		19	Phase current	Phase 1	t ₁ + 60 ms	[p.u.]		
	During	21	T Hadd dan six	Phase 3	t ₁ + 60 ms	[p.u.]		
	the break- in t1 to	22		Phase 1	r ₁ + 100 ms	[p.u.]		
	t2	23	Phase current	Phase 2	t ₁ + 100 ms	[p.u.]		
		24		Phase 3	r ₁ + 100 ms	[p.u.]		
		25	Active power	Total	t ₁ + 100 ms to t ₂ – 20 ms	[p.u.]		
	Ta	26 blo 10) - Tabular documentation	Mitsystem	t ₁ + 100 ms to t ₂ - 20 ms	[p.u.]		
		Т				value		
		No.	Parameter	Phase reference Phase-neutral	Reference time	[Unit]		
		27	Voltage	voltage	t ₂ + 3 s to t ₂ + 10 s	[p.u.]		
		28	Active power	Mitsystem	t ₂ + 3 s to t ₂ + 10 s	[p.u.]		
		29		Total	t ₂ + 3 s to t ₂ + 10 s	[p.u.]		
	after burglary	30	Rise time active power	Mitsystem	- t ₂ + 3 s to t ₂ + 10 s	[s]		
	> 12	31	Reactive power	Mitsystem Total	t ₂ + 3 s to t ₂ + 10 s	[p.u.]		
		33	Rise time reactive power	Mitsystem	-	[s]		
		34	EZE has not disconnected from the grid within 60 s after the error has ended yes / no	-	t ₂ to t ₂ + 60s	-		
7	Testin	g c	of auxiliary uni	ts	·		ı	N/A
7.1	Gener	al						N/A
	in acco	orda	units that have ance with Secti e described her	on 5.8 can				N/A
7.2	Tests							N/A

Page 77 of 243 Report No.: 6134610.50

							htlir						rtoport rto	
Clause	Poquire	mont To		_ · ·	_ '	(IO		110				lesult - Rem	ork	Verdict
Clause	Require	ement - Te	St									esuit - Rem	ark	verdict
	Table 11	1 - Signals and val	lues for the test behavior of support (1 of 2)	auxili	ary u	nits	with	dyna	mic	network				N/A
		Recorde	ed signals	Р	roces	sing		_	Avera	ging]			
	Formula characte rs	Importance		Instantaneous	RMS values	Symmetrical	components	hlockweies	slidina	Averaging period				
	u_1,u_2,u_3	Phase-neutral voltage	es (EZE)	х			×							
	^H 1 aux' ^H 2 aux' ^H 3 aux	Conductor neutral co	enductor voltages (auxiliary units)	x			×							
	i_1,i_2,i_3	Conductor currents		х	_		×							
	P _{soli}	Setpoint signal		х	+	-	×	+	+	+	-			
	cos φ _{soli}	Setpoint signal power		X	_		X	_	+	+	-			
	I _{DC}	DC voltage (converte		X	_	\vdash	×	_	+	+	-			
	P _{prim}	· ·	ly (only supply-dependent EZE	+	+		-	\top		+	1			
	prim		ssible for measurement)	×			×							
	$X_{ m data}$	Communication betw available)	veen auxiliary unit and EZE control (if	х			×							
	Ta		nd values for the test behavi support (2		auxil	iary	units	with	dyna	mic netw	ork			N/A
		Recorde	d signals	Pre	ocessi	ng	-	A	verag	ng				
	Formula character s	Importance		Instantaneous	RMS values	Symmetrical	Components	blockweise	sliding	Averaging period				
	$U_{ m pos}$	Voltage (EZE)				х		х		20 ms				
	$U_{ m pos,aux}$	Voltage (auxiliary unit	ts)			х		х		20 ms				
	P_{pos}	Active power				х		х		20 ms				
	Q_{pos}	Reactive power				х		х		20 ms				
	PDC	Available DC power ((converter systems and PV)		х			х		20 ms				
	foult	Time of entry error		Х			X							
	All signals are Outputs and a	Time of misstatement to be displayed in accordingles must be specified	t ordance with the sign convention of the d in accordance with DIN 40110-1 (mul	genera ti-cond	ator co	unting	g arrow	syster 0110-	n. 2).					
	the test the aux droppe nomina Table 1	t. To test the ciliary units do to a residual voltage for 2.	nit is operated at the auxiliary units to be tested and dual voltage of n or a minimum pe times of voltage dip units with dynamic r	th d th ot i erio	ne s neir mo d c	core re of t	oply ontr tha ime	ol n te a	olta are 50%	age of e % of the ording	ne			N/A
	Te	echnology	Synchronous units	ne	on-s	ync	hron	ous	unit	s				
	Minir	mum duration I _{dip}	0. 15 s				1.5 s							
	voltage entire of before voltage Alterna indeper	s at the auduration of the voltage returns. tively, an andently of	voltages at the luxiliary units must the test. The rece drop and ends auxiliary unit can an EZE. For this rated at full load	t b cord 10 be pu	e r ding mi te	ec g s nu ste	ord star ites ed e, th	ed ts af	for 10 ter	r the s the				N/A
	specific corresp The op- the test EZE ter which t	cations or upond to full erating cont report. Instrumentally, su	under those ope l load operation i nditions used are stead of the curr uitable signals ar sful continued op	rati n the e to ent	ng ne s s a o b	co as: e d inc e r	ondi soci loci d vo reco	tio iat um olta ord	ns ed en ge ed	EZE. ted in s at th , by				

Page 78 of 243 Report No.: 6134610.50

			age 70 of 240	-1	010-010.0				
		OVE	-Richtlinie R 25	T					
Clause	Requirement - T	est		Result - Remark	Verdict				
	status monitorin recording the ap does not genera	n with the EZE control g), it may be necessal propriate signals that ate any fault states with eriod that could lead to	ry to ensure by the auxiliary unit hin the		N/A				
5.7.3	Evaluation criter	ria			N/A				
	the auxiliary unit generation unit l provided if the g	oplies: The drop in the ts and their control mu being disconnected fro leneration unit has not thin 10 minutes after th	ist not result in the om the grid. Proof is been disconnected		N/A				
5.7.4	Documentation	of the tests		(See appended table)	N/A				
	voltage recovery of the EZE in the	uration of the test up to y, the voltage, active a e co-system sizes as v units are to be shown	nd reactive power well as the voltages		N/A				
APPEND IX A	TEST BENCH F	REQUIREMENTS			Р				
A .1	Measuring accuracy of the measuring devices								
	following measu	devices used should haring accuracies (see tall the same takes to the same the same takes takes to the same takes takes to the same takes takes takes to the same takes takes to the same takes	able A.1):		Р				
	Measurand	Frequency range	Measuring accuracy related to the measuring range						
	Voltage up to 1,000 V.	50 Hz DC to <1 kHz (except for 50 Hz) 1 kHz to <5 kHz 5 kHz to <20 kHz ≥ 20 kHz	=0,25 % ±1,0 % ±1,5 % ±2,5 %						
	Current <5 A Current > 5 A	50 Hz DC to < 60 Hz (except for 50 Hz) 60 Hz to < 5 kHz 5 kHz to < 20 kHz ≥ 20 kHz (except for 50 Hz) 50 Hz DC to < 5 kHz 5 kHz to < 20 kHz	+0,5 % ±1,0 % +1,5 % ±2,5 % +5,0 % ±0,5 % +1,5 % +3,5 % ±5,0 %						
	Frequency	≥ 20 kHz DC to < 60 Hz 60 Hz to 5 kHz 5 kHz to < 20 kHz ≥ 20 kHz	±0,01 Hz ±0,2 % ±0,5 % =1 %						
	Measurand	Measuring range	Measuring accuracy related to the measuring range						
	Displacement factor cos φ	$\cos \phi = 1 \text{ to } \cos \phi = 0.9$	0,0025						
	Time	10 ms to < 200 ms 200 ms to < 1 s > 1 s	±5 % of the measured value ±10 ms ±1 % of the measured value						
	Temperature	>-35 °C to 100 °C	±2 °C						
	should be based standards. The exceed 150% of	for measurements not d on the requirements selected measuring ra f the nominal value of	of the referenced inge should not		Р				
A.2	measured. Quality of the t	est hench		<u> </u>	Р				
A.2	wuanty of the t	COL NEHICII							

		ια	ge 13	01 243	Report	10 0134010.30
		OVE-F	Richtli	nie R 25	,	
Clause Requirement	nt - Test				Result - Remark	Verdict
A.2.1 General red	guirements					Р
The voltage	e on the test bench Un during the tests					Р
	ncy on the test ber tests, unless other					Р
total harmo / ÖNORM B	e on the test bench onic distortion of 3% EN 61000-3-2).	6 (THD ad	ccord	ing to ÖVE		Р
	al current of the EZ the test bench by r			ncrease the		Р
A.2.2 Test bench	requirements for F	RT tests				Р
following re- The efficiency perspect series in following respectively. Short-or fault mit according an switching according voltage The representations.	et facility and, if appor must be able to est object in the gearea. The energy countries of the occurring ording to OVE EN 6 every different. Guareat converter-coupled directly coupled as chines approx. 7 Increase of symmetrical directly coupled as chines approx. 7 Increase of symmetrical directly coupled as chines approx. 7 Increase of symmetrical directly coupled as chines approx. 7 Increase of symmetrical directly coupled as chines approx. 7 Increase of symmetrical directly coupled as chines approx. 8 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines approx. 9 Increase of symmetrical directly coupled as chines are chines and chines are	EZE beform and and ances used blicable, the carry the enerator and anonemptically surge should be a fault form with the phile A.2 multiple and anonemptically separate and anonemptically surge should be a fault form with the phile A.2 multiple and anonemptically and anonemptically separate anonemptically separate and anonemptically separate and anonemptically separate and anonemptically separate and anonemptically separate anonempt	the Einciple st me ore an O Sn; ed in the ne ne maxi s well on munort-ciple s are: appropulation or ans A ase a aust be or-ner	ze e: with the et the d after the d after the the test twork mum current as in the list be ircuit current the DUT ox. 2.2 Ir; synchronous crical voltage count the and D lingles of the observed.		P

	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
Clause	The slope of the voltage must correspond to that of a circuit breaker in the event of an fault and an fault explanation. The LV FRT should change the instantaneous voltage from 90% to 10% of the pre-fault voltage within a period of max. 4 ms. As part of the no load tests, the requirements for the curve shape of the test voltage must be checked. The test voltage must be within the range shown in Figure A.2 for voltage drop tests or in Figure A.3 tolerances shown for overvoltage tests. System voltage Upod/Un [p.u.] **Engure A.2 - Tolerances for voltage dips [Positive-sequence calculation according to OVE EN IEC 61400-21-1] System voltage Upod/Un [p.u.] **U tault** **Load Tolerances for voltage dips [Positive-sequence calculation according to OVE EN IEC 61400-21-1] System voltage Upod/Un [p.u.] **Load Tolerances for voltage dips [Positive-sequence calculation according to OVE EN IEC 61400-21-1] System voltage Upod/Un [p.u.] **Load Tolerances for voltage dips [Positive-sequence calculation according to OVE EN IEC 61400-21-1] **Time t [s] **Load Tolerances for voltage dips [Positive-sequence calculation according to OVE EN IEC 61400-21-1] **Time t [s] **Load Tolerances for voltage dips [Positive-sequence calculation according to OVE EN IEC 61400-21-1] **Time t [s]	Result - Remark	P
	Figure A.3 - Tolerances for voltage rise [Positive- sequence calculation according to OVE EN IEC 61400-21-1]		

Page 81 of 243

	OVE-Richtlinie R 25	·	
Clause	Requirement - Test	Result - Remark	Verdict
	 The occurrence of the fault must be independent of the phase position. It must be ensured that the test facility does not cause any interruptions or discontinuities in voltage and current during the tests. (Saturation and intrinsic effects that may occur due to the transformer-based test facility must be documented as part of the empty tests) 		Р
APPEND IX B	NOTES ON THE DELTA CHECK FOR VDE-AR-N 4105: 2	2018	Р
	In the TOR generator, an examination based on VDE-AR-N 4105 is permitted under clause 8 conformity footnote 31.	Not based on VDE-AR-N 4105, all applicable clause of TOR generator and OVE regulation R 25 was performed.	N/A
	Since the requirements of the TOR generators differ significantly from those specified in VDE-AR-N 4105: 2018, additional tests are required to assess whether the requirements of the TOR generators have been met.		N/A
	The following additional points must be checked in detail:		Р
	 General - Check the parameterization according to the TOR generator, Appendix A3 Setting values for inverters on low-voltage distribution networks. After selecting the country setting Austria (if available) or the setting according to a manufacturer's parameterization guide for Austria, a visual inspection must be carried out to determine whether the set values match the setting values specified in the TOR generator, Appendix A3. 	Not based on VDE-AR-N 4105, all applicable clause of TOR generator and OVE regulation R 25 was performed.	Р
	 5.3.2 Measurement of active and reactive power work area 		Р
	 5.3.6 Voltage-controlled active power limitation P (U) 		Р
	 5.3.9 Reactive power control according to setpoint Q fixed. 		Р
	 5.3.10 Live control functions 		Р
	 5.3.11 Protection of the settings according to the requirements of the TOR generators 		Р

Page 82 of 243 Report No.: 6134610.50

	OVE-Richtlinie R 25	·	
Clause	Requirement - Test	Result - Remark	Verdict

Summary of Test

Clause	Test Item	Summary (P/F/N/Retest)
(5.1.1 & 5.3.1)	Frequency range & Voltage range operating measurement	Р
5.1.2	Rapid voltage changes	Р
5.1.3	Flicker	Р
5.1.4	Harmonics and Interharmonics	Р
5.2 (6.1.1)	Testing the symmetry behaviour of three-phase inverters	Р
5.3 (5)	Test the behaviour of the generating unit on the network	Р
5.3.2 (5.3.3)	Measurement of active and reactive power working area (PQ diagram)	Р
5.3.3 (5.4.1)	Ceasing of power feed-in after remote control (input port)	Р
5.3.4 (5.1.3 & 5.5.2)	Active power reduction at overfrequency	Р
5.3.5 (5.1.5)	Active power reduction at underfrequency	Р
5.3.6 (5.3.6)	Voltage related active power reduction (P(U) control)	Р
5.3.6.1.1 (5.3.6)	Test sequence for the static behaviour of the P (U) control	Р
5.3.6.1.2 (5.3.6)	Test sequence for the dynamic behaviour of the P (U) control	Р
5.3.7 (5.3.4)	Reactive power control according to setpoint fixed cos φ	Р
5.3.8 (5.3.4.1)	Power related control mode – cos φ (P)	Р
5.3.9 (5.3.4)	Setpoint control modes – fixed Q	Р
5.3.10 (5.3.4.2 & 5.3.6)	Voltage-control functions (reactive power control Q (U) and active power control P (U))	Р
5.3.10.1.1 (5.3.4.2 & 5.3.6)	Test procedure for static behaviour	Р
5.3.10.1.2 (5.3.4.2 & 5.3.6)	Test procedure for dynamic behaviour	Р
5.3.11 (6.2.3)	Protection of the settings as requested by the TOR generator	Р
5.4.1.1.1 (6.1.2 & 6.3.3.1)	Testing the overvoltage protection $U_{\text{eff}} >>$ and the undervoltage protection $U_{\text{eff}} <$ and $U_{\text{eff}} <$	Р
5.4.1.1.2 (6.1.2)	Testing the overvoltage protection U _{eff} > with monitoring of the moving 10-minute average	Р
5.4.2 (6.1.2 & 6.3.3.1)	Frequency protection devices	Р
5.4.3	Detection of island operation	Р
5.5 (5.5.2)	Testing the connection conditions and synchronization	Р
5.6 (5.2)	Proof of dynamic network support	Р
5.7	Tests on auxiliary devices	N/A

Note:

The clause no. in this table and below appended table including two standards of OVE-Richtlinie R 25:2020-03-01 and TOR Erzeuger:2022-04-11. For example clause 5.2 (6.1.1), the clause 5.2 before the parenthesis is representing for OVE-Richtlinie R 25:2020-03-01 and 6.1.1 in the parenthesis is representing for TOR Erzeuger:2022-04-11.

Documentation of Austria country setting:

OVE-Richtlinie R 25 Clause Requirement - Test Report No.: 6134610.50

	fomation						
	Data Item	Data Value	Unit	Infomation	Read	Write	
19	Q(U) Curve Switch	OFF V	_	03:00:28 Read data success.	Read	Write	
		211.6	V	03:00:28 Read data success.	Read	Write	
	Q(U) Curve Point1 Reactive Power Percent	43.6	%	03:00:28 Read data success.	Read	Write	=
	Q(U) Point2 Voltage	220.8	V	03:00:28 Read data success.	Read	Write	=
		0.0	%	03:00:28 Read data success.	Read	Write	=
		241.5	V	03:00:28 Read data success.	Read	Write	=
							=
25		0.000	%	03:00:28 Read data success.	Read	Write	_
26		248.4	V	03:00:28 Read data success.	Read	Write	_
27		-43.6	%	03:00:28 Read data success.	Read	Write	
28	Time constant for Q(U)	5.0	S	03:00:28 Read data success.	Read	Write	
29	Minimum cos(phi)	0.400		03:00:28 Read data success.	Read	Write	
30	Cosφ(P) Curve			03:00:28 Read data success.			
31	Cosφ(P) Curve Switch	OFF ~		03:00:28 Read data success.	Read	Write	
32	Cosφ(P) Curve PointA Power	0.0	%	03:00:28 Read data success.	Read	Write	
33	Cosφ(P) Curve PointB Power	50.0	%	03:00:28 Read data success.	Read	Write	
34	Cosφ(P) Curve PointC Power	100.0	%	03:00:28 Read data success.	Read	Write	
35		1.000		03:00:28 Read data success.	Read	Write	
	Cosφ(P) Curve PointB PF	1.000		03:00:28 Read data success.	Read	Write	
	Cosφ(P) Curve PointC PF	0.900		03:00:28 Read data success.	Read	Write	
ta Inf	fomation						
	Data Item	Data Value	Unit	Infomation	Read	Write	
37	Cosφ(P) Curve PointC PF	0.900		03:00:28 Read data success.	Read	Write	
38				03:00:28 Read data success.			_
	Q fix	OFF ~		03:00:28 Read data success.	Read	Write	
40		0.0	%	03:00:28 Read data success.	Read	Write	
41		0.0	70	03:00:28 Read data success.	Redd	Wille	
	p	ON ×			Dood	Write	_
42		011		03:00:28 Read data success.	Read		
43	·	1.000		03:00:28 Read data success.	Read	Write	
44				03:00:28 Read data success.			_
45	Start Delay Time	60	S	03:00:28 Read data success.	Read	Write	
46	Grid Connected Recovery Time from Grid Faults	300	S	03:00:28 Read data success.	Read	Write	
47	Undervoltage Recovery Limit	195.5	V	03:00:28 Read data success.	Read	Write	
48	Overvoltage Recovery Limit	250.7	V	03:00:28 Read data success.	Read	Write	
49	Underfrequency Recovery Limit	47.50	Hz	03:00:28 Read data success.	Read	Write	
50	Overfrequency Recovery Limit	50.10	Hz	03:00:28 Read data success.	Read	Write	
51	Active power gradient after reconnection	8.0	%/min	03:00:28 Read data success.	Read	Write	
52	Overvoltage Derating			03:00:28 Read data success.			
53	Overvoltage Derating Switch	ON ~		03:00:28 Read data success.	Read	Write	
54	P(U) Curve Start Voltage	253.0	V	03:00:28 Read data success.	Read	Write	
	Power of P(U) Curve Start Voltage	100.0	%	03:00:28 Read data success.	Read	Write	
ita Inf	fomation				Pi-		
_	Data Item	Data Value	Unit	Infomation	Read	Write	,
	+	8.0		03:00:28 Read data success.	Read	Write	
51	Active power gradient after reconnection	0.0	%/min				
51 52		0.0	%/min	03:00:28 Read data success.			
52		ON ~	%/min		Read	Write	
52 53	Overvoltage Derating Overvoltage Derating	ON ~	%/min	03:00:28 Read data success.		Write	
52 53 54	Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage	ON ~ 253.0	V	03:00:28 Read data success. 03:00:28 Read data success. 03:00:28 Read data success.	Read	Write	
52 53 54 55	Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage	ON ~ 253.0 100.0	V %	03:00:28 Read data success. 03:00:28 Read data success. 03:00:28 Read data success. 03:00:28 Read data success.	Read Read	Write Write	
52 53 54 55 56	Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage	ON	V %	03:00:28 Read data success. 03:00:28 Read data success. 03:00:28 Read data success. 03:00:28 Read data success. 03:00:28 Read data success.	Read Read Read	Write Write Write	
52 53 54 55 56 57	Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage Power of P(U) Curve End Voltage Power of P(U) Curve End Voltage	ON	V % v %	03:00:28 Read data success.	Read Read Read	Write Write Write Write	
52 53 54 55 56 57 58	Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage Power of P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant	ON	V %	03:00:28 Read data success.	Read Read Read	Write Write Write	
52 53 54 55 56 57 58 59	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating	ON ~ 253.0 100.0 257.6 0.0 5.0	V % v %	03:00:28 Read data success.	Read Read Read Read	Write Write Write Write Write Write	
52 53 54 55 56 57 58 59 60	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating	ON	V % % v % s	03:00:28 Read data success.	Read Read Read Read Read Read	Write Write Write Write Write Write Write	
52 53 54 55 56 57 58 59	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating	ON ~ 253.0 100.0 257.6 0.0 5.0	V % v %	03:00:28 Read data success.	Read Read Read Read	Write Write Write Write Write Write	
52 53 54 55 56 57 58 59 60 61	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating	ON	V % % v % s	03:00:28 Read data success.	Read Read Read Read Read Read	Write Write Write Write Write Write Write	
52 53 54 55 56 57 58 59 60 61 62	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating Start Threshold of FP Overfrequency Derating	ON	V % V % S HZ	03:00:28 Read data success.	Read Read Read Read Read Read	Write Write Write Write Write Write Write Write Write	
52 53 54 55 56 57 58 59 60 61 62 63	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating Start Threshold of FP Overfrequency Derating Droop for P(f)	ON	V % V % S HZ %	03:00:28 Read data success.	Read Read Read Read Read Read Read Read	Write	
52 53 54 55 56 57 58 59 60 61 62 63 64	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating FP Overfrequency Derating Switch Start Threshold of FP Overfrequency Derating Droop for P(f) FPFrequency Threshold of Recovery Power from FP Overfrequency Derati	ON	V % V % S S HZ % HZ	03:00:28 Read data success.	Read Read Read Read Read Read Read Read	Write	
52 53 54 55 56 57 58 59 60 61 62 63 64	Overvoltage Derating Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating FP Overfrequency Derating Droop for P(f) FPFrequency Threshold of Recovery Power from FP Overfrequency Derating Allow Time of Recovery Power from FP Overfrequency Derating Slow Loading Switch of Recovery Power from FP Overfrequency Derating	ON	V % V % S S HZ % HZ	03:00:28 Read data success.	Read Read Read Read Read Read Read Read	Write	
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage P(U) Curve End Voltage P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating FP Overfrequency Derating Droop for P(f) FPFrequency Threshold of Recovery Power from FP Overfrequency Derating Allow Time of Recovery Power from FP Overfrequency Derating Slow Loading Switch of Recovery Power from FP Overfrequency Derating	ON	V % % V % % S S M HZ % M HZ S S	03:00:28 Read data success.	Read Read Read Read Read Read Read Read	Write	
52 53 54 55 56 57 58 59 60 61 62 63 64 65	Overvoltage Derating Overvoltage Derating Switch P(U) Curve Start Voltage Power of P(U) Curve Start Voltage Power of P(U) Curve End Voltage Power of P(U) Curve End Voltage Power of P(U) Curve End Voltage P(U) Time constant Overfrequency Derating FP Overfrequency Derating FP Overfrequency Derating Droop for P(f) FPFrequency Threshold of Recovery Power from FP Overfrequency Derati Allow Time of Recovery Power from FP Overfrequency Derating Slow Loading Switch of Recovery Power from FP Overfrequency Derating Slow Loading Rate of Recovery Power from FP Overfrequency Derating	ON	V % % V % % S S M HZ % M HZ S S	03:00:28 Read data success.	Read Read Read Read Read Read Read Read	Write	

Page 85 of 243 Report No.: 6134610.50

	: age 66 6: = 16		
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

	Data Item	Data Value	Unit	Infomation	Read	Write	
68	LVRT Switch	ON \	,	03:00:28 Read data success.	Read	Write	
69	LVRT zero current ON	0.800	Un	03:00:28 Read data success.	Read	Write	
70	LVRT Point 1	0.150	Un	03:00:28 Read data success.	Read	Write	
71	LVRT Point 1 protect time	200	ms	03:00:28 Read data success.	Read	Write	
72	LVRT Point 2	0.300	Un	03:00:28 Read data success.	Read	Write	
73	LVRT Point 2 protect time	350	ms	03:00:28 Read data success.	Read	Write	
74	LVRT Point 3	0.500	Un	03:00:28 Read data success.	Read	Write	
75	LVRT Point 3 protect time	900	ms	03:00:28 Read data success.	Read	Write	
76	LVRT Point 4	0.750	Un	03:00:28 Read data success.	Read	Write	
77	LVRT Point 4 protect time	1500	ms	03:00:28 Read data success.	Read	Write	
78	LVRT Point 5	0.810	Un	03:00:28 Read data success.	Read	Write	
79	LVRT Point 5 protect time	1500	ms	03:00:28 Read data success.	Read	Write	
80	HVRT			03:00:28 Read data success.			
81	HVRT Switch	OFF	,	03:00:28 Read data success.	Read	Write	
82	HVRT Lock-in Voltage	1.141	Un	03:00:28 Read data success.	Read	Write	
83	Others			03:00:28 Read data success.			
84	10-min Overvoltage Protection Switch	ON \	,	03:00:28 Read data success.	Read	Write	
85	10-min Overvoltage Protection Threshold	255.3	٧	03:00:28 Read data success.	Read	Write	
86	Slow Loading Switch	ON	,	03:00:28 Read data success.	Read	Write	

Note: The selection of Austria country setting can only be completed in the factory or authorised person, the user cannot change the country setting.

Page 86 of 243 Report No.: 6134610.50

	3	<u>'</u>	
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

(5.1.1 & 5.3.1)	TABL	ABLE: Frequency range &Voltage range operating measurement							
Model		Hybridpower 12kW 3	ph			·			
Test condit	tion		P=1	00%S _n @ PF=1					
Test seque	ence	Setting Value	Frequency [Hz]	Voltage [V]	Output power [W]	Time period Required			
Test 1		85% U _n / 47.5 Hz	47.50	195.67	11692.30	> 60 min			
Test 2	2	85% U _n / 48.5 Hz	48.50	195.66	11685.54	> 90 min			
Test 3		110% U _n / 51.0 Hz	51.00	253.14	11932.21	> 90 min			
Test 4		110% U _n / 51.5 Hz	51.50	253.24	11916.46	> 30 min			
Test 5		112% U _n / 50.0 Hz	50.00	257.76	11916.49	> 10 min			

Note:

Respecting the legal framework, it is possible that longer time periods are required by the responsible party in some synchronous areas.

If the voltage is lower than U_n , the active power may be reduced below the rated value due to the output current limit of the inverter.

The testing values refer to EN 50549-1, the settings of the interface protection were disable when performing this test.

	OVE-Richtl	linie R 25	
Clause	Requirement - Test	Result - Remark	Verdict

5.1.2	TABLE:	E: Rapid voltage changes – Phase A								
Model	Hybridpo	ower 12kW 3ph	er 12kW 3ph							
Test cases	s:		on without sperated output p			Most unfavourable case when switching the generator (10% → 100% rated output power)				
Cos φ sett	ting	Cos φ=1.00	Cos φ = max.over- excited	Cos φ= max.under- excited	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under -excited			
Single per effective v the voltage	alues of	229.7	229.3	228.9	229.3	230.6	230.9			
Single per effective v the curren	alues of	1.189	1.837	2.042	1.975	2.821	1.893			
k i		0.068	0.106	0.117	0.114	0.162	0.109			
Test cases	s:	Switching on at rated power			Switch off at rated power					
Cos φ sett	ting	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under- excited	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under -excited			
Single per effective v the voltage	alues of	229.3	229.6	229.4	228.0	226.2	230.5			
Single per effective v the curren	alues of	1.328	1.641	1.763	1.471	1.508	2.005			
\mathbf{k}_{i}		0.076	0.094	0.101	0.085	0.087	0.115			
k imax	K _{imax} 0.162									

Test conditions:

Frequency: 50 Hz ± 0.5% THD of the voltage supply: ≤ 3%

Voltage rise of the PGU at 100% P_{Emax}: ≤ 3%

Note

Power generation units with inverters (such as photovoltaic systems) and storage units with inverters shall only be connected with $k_{imax} \le 1.2$.

	1 19 00 01 = 10					
OVE-Richtlinie R 25						
Clause	Requirement - Test	Result - Remark	Verdict			

5.1.2	TABLE:	TABLE: Rapid voltage changes – Phase B							
Model	Hybridpo	ower 12kW 3ph							
Test cases	s:		on without spe rated output p			Most unfavourable case when switching the generator (10% → 100% rated output power)			
Cos φ set	ting	Cos φ=1.00	Cos φ = max.over- excited	Cos φ= max.under- excited	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under -excited		
Single per effective v the voltage	alues of	228.8	229.0	229.0	229.3	229.1	228.5		
Single per effective v the curren	alues of	1.189	1.837	2.042	1.975	2.821	1.893		
k i		0.068	0.106	0.117	0.114	0.162	0.109		
Test cases	s:	Switching on at rated power			Switch off at rated power				
Cos φ set	ting	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under- excited	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under -excited		
Single per effective v the voltage	alues of	228.8	229.2	228.9	228.0	224.4	231.5		
Single per effective v the curren	alues of	1.328	1.641	1.763	1.471	1.508	2.005		
k i		0.076	0.094	0.101	0.085	0.087	0.115		
k imax				0.1	62				

Test conditions:

Frequency: 50 Hz ± 0.5% THD of the voltage supply: ≤ 3%

Voltage rise of the PGU at 100% P_{Emax}: ≤ 3%

Note

Power generation units with inverters (such as photovoltaic systems) and storage units with inverters shall only be connected with $k_{imax} \le 1.2$.

		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

5.1.2	TABLE:	TABLE: Rapid voltage changes – Phase C							
Model	Hybridpo	ower 12kW 3ph							
Test case	s:		on without sperated output p			Most unfavourable case when switching the generator (10% → 100% rated output power)			
Cos φ set	ting	Cos φ=1.00	Cos φ = max.over- excited	Cos φ= max.under- excited	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under -excited		
Single per effective v the voltag	alues of	230.3	230.4	230.3	230.0	231.4	230.6		
Single per effective v the curren	alues of	1.923	1.348	1.357	1.922	2.525	2.226		
k i		0.111	0.077	0.078	0.110	0.145	0.128		
Test case	s:	Switching on at rated power			Switch off at rated power				
Cos φ set	ting	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under- excited	Cos φ=1.00	Cos φ= max.over- excited	Cos φ= max.under -excited		
Single per effective v the voltag	alues of	230.5	230.3	230.3	229.3	226.6	231.4		
Single per effective v the curren	alues of	1.227	1.026	1.772	1.245	2.088	1.306		
k i		0.071	0.059	0.102	0.072	0.120	0.075		
k imax	imax 0.145								

Test conditions:

Frequency: $50 \text{ Hz} \pm 0.5\%$ THD of the voltage supply: $\leq 3\%$

Voltage rise of the PGU at 100% P_{Emax}: ≤ 3%

Note

Power generation units with inverters (such as photovoltaic systems) and storage units with inverters shall only be connected with $k_{imax} \le 1.2$.

Page 90 of 243 Report No.: 6134610.50

			3		•					
	OVE-Richtlinie R 25									
Clause	Requirement - 7	Test		Res	sult - Remark	Verdict				
5.1.3	TABLE: Flicker	ABLE: Flicker								
Model	Hybridpower 12	kW 3ph								
	must be demonst				000-3-3 or ÖVE / Ö۱	NORM EN				
Paramete	er:	dc%	d _{max}	d(t)	P _{st}	*Plt				
Limit:		3.3%	4.00%	500 ms	1.00	0.65				
DIN EN 6	5 1000-3-3 (≤ 16 A)									
Phase A										
Phase B										
Phase C										
DIN EN 6	61000-3-11 (> 16 <i>A</i>	and ≤ 75 A)								
Phase A		0.032	0.089	0	0.029	0.028				
Phase B		0.003	0.181	0	0.036	0.036				
Phase C		0.014	0.081	0	0.026	0.024				
Note: The maximum for all P _{st} values must be selected as the value for long-term flicker value P _{lt.}										

Page 91 of 243 Report No.: 6134610					
		OVE-Richtlinie R 25			
Clause	Requirement - Test		Result - Remark	Verdict	

1 (VDE 0127-21) (or	FGW TR3)		
	10% P _n		
30°	50°	70°	85°
0.012	0.010	0.006	0.004
0.012	0.009	0.006	0.004
0.012	0.009	0.006	0.004
0.561	0.467	0.280	0.187
0.561	0.421	0.280	0.187
0.561	0.421	0.280	0.187
	20% P _n		
30°	50°	70°	85°
0.012	0.010	0.006	0.004
0.012	0.009	0.006	0.004
0.012	0.009	0.006	0.004
	1		1
0.561	0.467	0.280	0.187
0.561	0.421	0.280	0.187
0.561	0.421	0.280	0.187
	30% Pn		
30°	50°	70°	85°
	1		1
0.012	0.009	0.006	0.004
0.011	0.009	0.006	0.004
0.011	0.009	0.005	0.004
	1		1
0.561	0.421	0.280	0.187
0.514	0.421	0.280	0.187
0.514	0.421	0.234	0.187
	40% P _n	,	
30°	50°	70°	85°
0.010	0.008	0.005	0.003
0.010	0.007	0.005	0.003
0.010	0.007	0.005	0.003
	30° 0.012 0.012 0.012 0.561 0.561 0.012 0.012 0.012 0.012 0.0561 0.561 0.561 0.561 0.561 30° 0.012 0.011 0.011 0.011	30° 50° 0.012 0.010 0.012 0.009 0.012 0.009 0.561 0.467 0.561 0.421 20% Pn 30° 30° 50° 0.012 0.010 0.012 0.009 0.012 0.009 0.561 0.421 0.561 0.421 30° 50° 0.012 0.009 0.011 0.009 0.011 0.009 0.514 0.421 0.514 0.421 0.514 0.421 0.514 0.421 0.514 0.421 0.514 0.421 0.510 0.008 0.010 0.008 0.010 0.007	10% Pn 30° 50° 70° 0.012 0.010 0.006 0.012 0.009 0.006 0.012 0.009 0.006 0.561 0.421 0.280 0.561 0.421 0.280 20% Pn 30° 50° 70° 0.012 0.009 0.006 0.012 0.009 0.006 0.012 0.009 0.006 0.012 0.009 0.006 0.561 0.467 0.280 0.561 0.467 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.561 0.421 0.280 0.011 0.009 0.006 0.011 0.009 0.006 0.011 0.009 0.006 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.280 0.514 0.421 0.234

	OVE	-Richtlinie R 25		
Clause Requirement - Tes	t		Result - Remark	Verdict
Flicker coefficient c(ψ _k)				
Phase A	0.467	0.374	0.234	0.140
Phase B	0.467	0.327	0.234	0.140
Phase C	0.467	0.327	0.234	0.140
		50% P _n		
Grid impedance angle ψ _k	30°	50°	70°	85°
Short-term flicker P _{st}				
Phase A	0.008	0.006	0.004	0.003
Phase B	0.008	0.006	0.004	0.003
Phase C	0.008	0.006	0.004	0.003
Flicker coefficient c(ψ _k)				
Phase A	0.374	0.280	0.187	0.140
Phase B	0.374	0.280	0.187	0.140
Phase C	0.374	0.280	0.187	0.140
		60% P _n		
Grid impedance angle ψ _k	30°	50°	70°	85°
Short-term flicker Pst				
Phase A	0.008	0.007	0.004	0.003
Phase B	0.008	0.007	0.004	0.003
Phase C	0.009	0.007	0.005	0.003
Flicker coefficient $c(\psi_k)$				
Phase A	0.374	0.327	0.187	0.140
Phase B	0.374	0.327	0.187	0.140
Phase C	0.421	0.327	0.234	0.140
		70% P _n		
Grid impedance angle ψ _k	30°	50°	70°	85°
Short-term flicker Pst				
Phase A	0.008	0.007	0.005	0.003
Phase B	0.008	0.006	0.004	0.003
Phase C	0.008	0.007	0.004	0.003
Flicker coefficient c(ψ _k)				
Phase A	0.374	0.327	0.234	0.140
Phase B	0.374	0.280	0.187	0.140
Phase C	0.374	0.327	0.187	0.140
		80% P _n		
Grid impedance angle ψ _k	30°	50°	70°	85°
Short-term flicker Pst				

		<u> </u>	age 93 01 243		JIT NO.: 0134010.50
		OVE	-Richtlinie R 25		
Clause	Requirement - Tes	t		Result - Remark	Verdict
Phase A		0.009	0.007	0.005	0.003
Phase B		0.008	0.006	0.004	0.003
Phase C		0.008	0.006	0.004	0.003
Flicker co	efficient c(ψ _k)				
Phase A		0.421	0.327	0.234	0.140
Phase B		0.374	0.280	0.187	0.140
Phase C		0.374	0.280	0.187	0.140
			90% P _n		
Grid impe	edance angle ψ _k	30°	50°	70°	85°
Short-terr	n flicker P _{st}				
Phase A		0.011	0.009	0.006	0.004
Phase B		0.011	0.009	0.006	0.004
Phase C		0.011	0.009	0.005	0.004
Flicker co	efficient c(ψ _k)				
Phase A		0.514	0.421	0.280	0.187
Phase B		0.514	0.421	0.280	0.187
Phase C		0.514	0.421	0.234	0.187
			100% P _n		
Grid impe	edance angle ψ _k	30°	50°	70°	85°
Short-terr	n flicker P _{st}		•		
Phase A		0.011	0.009	0.006	0.004
Phase B		0.011	0.009	0.006	0.004
Phase C		0.011	0.009	0.005	0.004
Flicker co	efficient c(ψ _k)				
Phase A		0.514	0.421	0.280	0.187
Phase B		0.514	0.421	0.280	0.187
Phase C		0.514	0.421	0.234	0.187
			100% P _n		
Grid impe	edance angle ψκ	30°	50°	70°	85°
Short-terr	n flicker P _{st}				
Phase A		0.014	0.013	0.011	0.011
Phase B		0.014	0.013	0.011	0.011
Phase C		0.014	0.012	0.011	0.011
Flicker co	efficient c(ψ _k)				
Phase A		0.654	0.607	0.514	0.514
Phase B		0.654	0.607	0.514	0.514
Phase C		0.654	0.561	0.514	0.514

Report No.: 6134610.50

	3	<u>'</u>	
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

	100% P _n											
Grid impedance angle ψ _k	30°	50°	70°	85°								
Short-term flicker Pst												
Phase A 0.010 0.008 0.005 0.004												
Phase B	0.010	0.008	0.005	0.004								
Phase C	0.010	0.007	0.005	0.004								
Flicker coefficient c(ψ _k)												
Phase A	0.467	0.374	0.234	0.187								
Phase B	0.467	0.374	0.234	0.187								
Phase C	0.467	0.327	0.234	0.187								

Remark:

The tested PV inverter may be used in EZA with nominal currents> 75 A.

5.1.3.2 Testing:

For controllable EZE with nominal currents> 75 A, at least 12 measurements of 10 minutes each must be carried out. One measurement each within the 9 performance intervals [0%, 10%], [10%, 20%] to [80%, 90%] related to P_n and three measurements in the interval from 90% P_n to P_n . One measurement consists of determining the short-term flicker strength P_{st} as a 3-tuple (phases L1, L2 and L3). For non-controllable EZE, a tuple must be determined for the adjustable working points and P_n .

Alternatively, P_{It} may be determined for each of the above measurements according to ÖVE / ÖNORM EN 61000-4-15.

5.1.3.3 Assessment criterion:

The maximum for all P_{st} should be selected as the value for the long-term flicker strength P_{lt} . Determination of the flicker coefficient:

$$c_{wk} = P_{st} \times (S_k / P_n)$$

Where

P_{st} is the short-term flicker value measured at the grid substitute element;

 S_k is the short-circuit power of the network standby element (during the determination of the appropriate P_{st} values).

Test conditions:

 $Z_{test} = Z_{ref}$:

$$\begin{split} Z_A &= R_A + X_A = 0.24 \; \Omega + j \; 0.15 \; \Omega \\ Z_N &= R_N + X_N = 0.16 \; \Omega + j \; 0.10 \; \Omega \\ \text{Voltage: } 86\% \; U_n \; \text{to } 109\% \; U_n \end{split}$$

Frequency: 50 Hz \pm 0.5% THD of the voltage supply: \leq 3%

Voltage rise of the PGU at 100% P_{Emax}: ≤ 3%

Page 95 of 243 Report No.: 6134610.50

	OVE-Richtlinie R 25													
Clause	Require	ment -	Test						ı	Result -	Remar	k		Verdict
5.1.4	TABLE a) Gene					nonics single de	evices)	with	a ı	rated c	urrent :	≤ 75 A		Р
Model	Hybridp	ower 1	2kW 3p	h										
Maximum	permissi	ble ha	rmonic (current a	as per	EN 6100	0-3-2 (Class	A					
Harmonic s	2 nd	+	3 rd	5 ^t	h	7 th	9	h		11 th	13 [#]	h .		n ≤ 39 h
Limit [A]	1,0	3	2,30	1,1	4	0,77	0,	4		0,33	0,2	1	0,15 *	(15/n)
Test value [A]	N/A	4	N/A	N/	A	N/A	N/	A		N/A	N/A	4	N	/A
Note: The tests s	should be	e base	d on the	e limits c	of the I	EN61000	-3-2 foı	r less	tha	an 16 A	_			
The tests should be based on the limits of the EN61000-3-2 for less than 16 A. Maximum permissible harmonic current as per EN 61000-3-12														
Harmonic 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th														
Limit [%] 3-phase	-phase N/A 8.00 N/A 4.00 10.7 2.67 7.20 2.00 N/A 1.60 3.10 1.33 2.0											2.00		
Limit [%] single phase	N/A	8.00	21.6	4.00	10.7	2.67	7.20	2.0	0	3.80	1.60	3.10	1.33	2.00
Test value L1 Phase [A]	17.363	0.159	0.073	0.102	0.27	6 0.019	0.179	0.01	8	0.021	0.033	0.135	0.009	0.075
Test value L2 Phase [A]	17.522	0.109	0.031	0.098	0.28	7 0.016	0.173	0.00)7	0.019	0.036	0.120	0.01	3 0.084
Test value L3 Phase [A]	17.478	0.093	0.034	0.086	0.30	3 0.006	0.191	0.01	4	0.010	0.022	0.118	0.00	5 0.083
Test value L1 Phase [%]	N/A	0.914	0.420	0.586	1.59	1 0.108	1.032	0.10)6	0.121	0.192	0.775	0.05	1 0.435
Test value L2 Phase [%]	N/A	0.622	0.175	0.559	1.64	0.093	0.987	0.04	! 1	0.109	0.203	0.686	0.070	6 0.481
Test value L3 Phase [%]	N/A	0.531	0.196	0.492	1.73	4 0.034	1.092	0.08	30	0.059	0.124	0.677	0.03	0.477
					TH	IC					PW	HC		
Three-phase limit [%] 13 22														
Single-pha	se limit	[%]			2	3					2	3		
Test value	- L1 pha	ase [%]]		2.5	33					3.6	65		
Test value	- L2 pha	ase [%]]		2.4	.00		3.655						
Test value					2.4	57					3.5	62		
Note: The tests s				limits c	of the l	EN 61000)-3-12 1	or mo	ore	than 16	6 A.			

	Page 96 of 243	Report No.: 6	134610.50
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict
	TABLE: Additional Measurements for PGU provide	d for PGS having Nominal	
5.1.4	Currents >75 A		P
Model	Hybridpower 12kW 3ph		_
Harmoni	CS CS		

5.1.4		TABLE: Additional Measurements for PGU provided for PGS having Nominal Currents >75 A									
Model	Hybrid	ower 12	kW 3ph								
Harmonio	cs										
P/P _n [%]	0	10	20	30	40	50	60	70	80	90	100
Order	I [%]	I [%]	I [%]	l [%]	I [%]	l [%]	I [%]	I [%]	l [%]	I [%]	I [%]
2	0.141	0.332	0.245	0.244	0.250	0.218	0.231	0.257	0.324	0.442	0.579
3	0.119	0.300	0.335	0.335	0.352	0.347	0.342	0.361	0.358	0.359	0.389
4	0.061	0.155	0.098	0.107	0.108	0.123	0.187	0.254	0.370	0.491	0.603
5	0.253	0.426	0.861	1.036	1.143	1.244	1.314	1.290	1.327	1.393	1.492
6	0.083	0.076	0.097	0.097	0.116	0.121	0.126	0.130	0.135	0.132	0.148
7	0.281	0.306	0.449	0.625	0.698	0.709	0.776	0.842	0.879	0.873	0.883
8	0.040	0.111	0.132	0.150	0.158	0.165	0.148	0.133	0.119	0.111	0.098
9	0.064	0.048	0.090	0.113	0.114	0.106	0.114	0.109	0.093	0.090	0.087
10	0.031	0.082	0.108	0.125	0.135	0.164	0.176	0.197	0.212	0.227	0.252
11	0.124	0.086	0.173	0.335	0.452	0.515	0.560	0.564	0.584	0.613	0.662
12	0.028	0.028	0.037	0.055	0.062	0.070	0.074	0.076	0.068	0.076	0.076
13	0.136	0.173	0.107	0.211	0.292	0.342	0.372	0.390	0.414	0.399	0.387
14	0.034	0.033	0.040	0.047	0.048	0.050	0.055	0.051	0.050	0.051	0.057
15	0.029	0.020	0.040	0.043	0.044	0.054	0.057	0.058	0.056	0.053	0.063
16	0.020	0.032	0.039	0.049	0.046	0.049	0.054	0.059	0.060	0.066	0.067
17	0.145	0.152	0.091	0.139	0.181	0.229	0.258	0.264	0.292	0.294	0.293
18	0.016	0.025	0.028	0.029	0.020	0.024	0.023	0.026	0.024	0.025	0.024
19	0.055	0.088	0.086	0.125	0.130	0.169	0.214	0.246	0.299	0.313	0.325
20	0.025	0.022	0.019	0.020	0.016	0.019	0.019	0.018	0.023	0.023	0.028
21	0.015	0.019	0.035	0.020	0.026	0.038	0.046	0.054	0.051	0.052	0.053
22	0.021	0.016	0.012	0.012	0.015	0.015	0.014	0.018	0.021	0.026	0.035
23	0.033	0.013	0.090	0.108	0.059	0.103	0.147	0.189	0.247	0.268	0.284
24	0.012	0.015	0.016	0.019	0.025	0.024	0.026	0.028	0.027	0.036	0.039
25	0.041	0.052	0.087	0.114	0.080	0.068	0.093	0.106	0.152	0.157	0.159
26	0.013	0.018	0.025	0.021	0.027	0.033	0.031	0.034	0.032	0.033	0.038
27	0.026	0.017	0.032	0.018	0.029	0.035	0.042	0.045	0.043	0.042	0.050
28	0.014	0.015	0.020	0.021	0.032	0.034	0.035	0.037	0.040	0.043	0.046
29	0.062	0.098	0.105	0.117	0.071	0.046	0.067	0.083	0.126	0.129	0.129
30	0.012	0.008	0.010	0.011	0.023	0.031	0.032	0.033	0.025	0.025	0.021
31	0.051	0.087	0.080	0.098	0.176	0.141	0.122	0.145	0.182	0.192	0.196
32	0.010	0.012	0.015	0.011	0.020	0.026	0.024	0.020	0.019	0.017	0.020

Page 97 of 243 Report No.: 6134610.50

				1 age 37 of 243					rtcpoi	1110 01	34010.30
				C	OVE-Rich	tlinie R 2	5				
Clause	Require	ement - T	est					Result - Re		Verdict	
33	0.020	0.019	0.030	0.051	0.052	0.023	0.028	0.029	0.021	0.021	0.024
34	0.010	0.009	0.008	0.012	0.014	0.024	0.036	0.021	0.013	0.013	0.013
35	0.018	0.038	0.062	0.123	0.200	0.144	0.126	0.153	0.152	0.153	0.152
36	0.010	0.009	0.008	0.010	0.020	0.020	0.018	0.040	0.026	0.022	0.022
37	0.028	0.019	0.035	0.051	0.059	0.072	0.105	0.287	0.282	0.147	0.116
38	0.011	0.011	0.012	0.010	0.007	0.010	0.034	0.038	0.079	0.036	0.031
39	0.011	0.012	0.011	0.012	0.012	0.011	0.018	0.047	0.043	0.036	0.042
40	0.009	0.012	0.011	0.012	0.012	0.012	0.016	0.037	0.033	0.051	0.038

Note:

The nominal current is 17.4 A.
The stated harmonics are max values of three phases.

5.1.4	TABLE: Currents	Additiona >75A	al Measur	ements f	or PGU	provide	ed for Po	GS havi	ng Nom	inal	Р
Model	Hybridpo	wer 12kW	/ 3ph								
Interharm	onics										
P/P _n [%]	0	10	20	30	40	50	60	70	80	90	100
f [Hz]	I [%]	I [%]	I [%]	I [%]	I [%]	I [%]	I [%]	I [%]	I [%]	I [%]	I [%]
75	0.054	0.628	0.340	0.469	0.702	0.625	0.766	0.797	0.939	1.018	1.146
125	0.056	0.389	0.242	0.307	0.363	0.312	0.341	0.338	0.365	0.411	0.418
175	0.050	0.228	0.157	0.192	0.223	0.202	0.224	0.226	0.249	0.278	0.308
225	0.041	0.169	0.128	0.168	0.201	0.185	0.206	0.218	0.225	0.237	0.269
275	0.035	0.136	0.112	0.148	0.176	0.158	0.176	0.188	0.188	0.202	0.236
325	0.031	0.103	0.087	0.119	0.147	0.129	0.145	0.145	0.165	0.174	0.184
375	0.027	0.077	0.066	0.092	0.110	0.105	0.119	0.125	0.140	0.150	0.159
425	0.026	0.066	0.059	0.074	0.087	0.081	0.087	0.090	0.100	0.109	0.116
475	0.024	0.056	0.053	0.066	0.079	0.076	0.082	0.084	0.088	0.098	0.103
525	0.022	0.049	0.045	0.060	0.081	0.082	0.090	0.095	0.095	0.104	0.118
575	0.021	0.046	0.040	0.056	0.076	0.079	0.086	0.094	0.089	0.097	0.108
625	0.020	0.042	0.037	0.047	0.069	0.069	0.079	0.080	0.089	0.088	0.090
675	0.019	0.039	0.038	0.040	0.055	0.060	0.068	0.074	0.081	0.082	0.081
725	0.018	0.036	0.035	0.038	0.048	0.045	0.049	0.050	0.057	0.055	0.058
775	0.017	0.035	0.033	0.038	0.044	0.042	0.044	0.048	0.050	0.050	0.051
825	0.016	0.035	0.029	0.035	0.046	0.049	0.055	0.062	0.065	0.065	0.072
875	0.015	0.037	0.027	0.032	0.044	0.050	0.057	0.065	0.059	0.065	0.070
925	0.014	0.031	0.023	0.028	0.039	0.040	0.053	0.055	0.060	0.060	0.063
975	0.013	0.026	0.020	0.024	0.032	0.036	0.045	0.052	0.054	0.060	0.060
1025	0.013	0.021	0.018	0.022	0.029	0.027	0.033	0.033	0.036	0.040	0.042

Page 98 of 243 Report No.: 6134610.50

	3											
				OVE	-Richtlin	ie R 25						
Clause	Requiren	nent - Tes	t				Re	esult - Re	emark		Verdict	
1075	0.012	0.020	0.018	0.021	0.028	0.025	0.030	0.032	0.034	0.040	0.041	
1125	0.012	0.020	0.017	0.020	0.028	0.031	0.037	0.042	0.050	0.055	0.059	
1175	0.011	0.020	0.017	0.021	0.029	0.032	0.038	0.045	0.048	0.056	0.057	
1225	0.011	0.021	0.016	0.021	0.028	0.029	0.037	0.042	0.048	0.050	0.054	
1275	0.010	0.020	0.016	0.020	0.026	0.028	0.034	0.040	0.044	0.048	0.051	
1325	0.011	0.018	0.016	0.019	0.025	0.026	0.030	0.031	0.035	0.035	0.038	
1375	0.011	0.018	0.016	0.019	0.024	0.026	0.028	0.030	0.033	0.033	0.036	
1425	0.011	0.017	0.017	0.018	0.024	0.027	0.032	0.035	0.042	0.044	0.046	
1475	0.011	0.018	0.016	0.020	0.026	0.028	0.032	0.037	0.041	0.045	0.044	
1525	0.012	0.016	0.014	0.021	0.030	0.027	0.033	0.036	0.042	0.041	0.043	
1575	0.012	0.016	0.016	0.017	0.034	0.029	0.032	0.038	0.039	0.043	0.043	
1625	0.012	0.015	0.017	0.019	0.025	0.039	0.033	0.032	0.031	0.030	0.032	
1675	0.012	0.016	0.015	0.020	0.023	0.033	0.039	0.031	0.030	0.031	0.031	
1725	0.013	0.016	0.016	0.023	0.030	0.029	0.052	0.040	0.043	0.040	0.043	
1775	0.013	0.015	0.014	0.018	0.037	0.033	0.039	0.060	0.048	0.047	0.048	
1825	0.013	0.015	0.015	0.017	0.026	0.041	0.038	0.078	0.067	0.055	0.054	
1875	0.015	0.015	0.014	0.014	0.018	0.029	0.043	0.047	0.080	0.058	0.051	
1925	0.016	0.016	0.018	0.017	0.015	0.020	0.052	0.050	0.088	0.067	0.058	
1975	0.017	0.017	0.020	0.018	0.016	0.016	0.029	0.062	0.059	0.092	0.068	
Note:					·	·					·	

Note:

The nominal current is 17.4 A.
The stated harmonics are max values of three phases.

5.1.4		ABLE: Additional Measurements for PGU provided for PGS having Nominal urrents >75A										
Model	Hybridpo	wer 12kW	3ph									
Higher Frequencies												
P/P _n [%]	0	10	20	30	40	50	60	70	80	90	100	
f [kHz]	I [%]	I [%]	I [%]	I [%]	I [%]	l [%]	I [%]	l [%]	l [%]	I [%]	l [%]	
2.1	0.044	0.038	0.039	0.062	0.077	0.072	0.108	0.304	0.332	0.279	0.493	
2.3	0.041	0.038	0.035	0.043	0.050	0.044	0.049	0.057	0.096	0.204	0.480	
2.5	0.036	0.036	0.036	0.040	0.046	0.045	0.047	0.056	0.053	0.067	0.110	
2.7	0.039	0.030	0.039	0.033	0.039	0.040	0.044	0.050	0.052	0.068	0.107	
2.9	0.041	0.035	0.037	0.040	0.042	0.041	0.044	0.045	0.053	0.055	0.065	
3.1	0.048	0.044	0.044	0.049	0.049	0.049	0.051	0.057	0.052	0.055	0.052	
3.3	0.061	0.057	0.057	0.060	0.062	0.059	0.065	0.071	0.078	0.084	0.094	
3.5	0.061	0.059	0.061	0.065	0.067	0.067	0.072	0.083	0.090	0.096	0.109	
3.7	0.064	0.072	0.086	0.095	0.104	0.110	0.129	0.152	0.180	0.212	0.249	

Page 99 of 243 Report No.: 6134610.50

CV5 Di Livi - D.05											
	1			OVE	E-Richtlir	nie R 25					
Clause	Require	Requirement - Test						Result - Remark			Verdict
3.9	0.053	0.054	0.056	0.059	0.061	0.063	0.068	0.075	0.080	0.083	0.088
4.1	0.046	0.048	0.052	0.055	0.057	0.060	0.064	0.068	0.070	0.072	0.073
4.3	0.038	0.040	0.043	0.045	0.048	0.050	0.053	0.056	0.058	0.060	0.061
4.5	0.029	0.030	0.031	0.033	0.034	0.036	0.037	0.040	0.041	0.042	0.042
4.7	0.030	0.030	0.031	0.032	0.033	0.034	0.034	0.035	0.036	0.036	0.036
4.9	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.023	0.023	0.023	0.024
5.1	0.016	0.016	0.016	0.017	0.017	0.018	0.018	0.019	0.019	0.019	0.020
5.3	0.013	0.014	0.014	0.014	0.015	0.015	0.016	0.016	0.016	0.016	0.016
5.5	0.011	0.012	0.012	0.012	0.013	0.013	0.013	0.013	0.013	0.014	0.014
5.7	0.010	0.010	0.010	0.010	0.011	0.011	0.011	0.011	0.011	0.012	0.012
5.9	0.008	0.008	0.008	0.008	0.009	0.009	0.009	0.009	0.009	0.009	0.009
6.1	0.007	0.008	0.007	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
6.3	0.005	0.006	0.005	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
6.5	0.004	0.005	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
6.7	0.003	0.004	0.003	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
6.9	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
7.1	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
7.3	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
7.5	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
7.7	0.001	0.002	0.001	0.002	0.002	0.001	0.002	0.001	0.002	0.002	0.002
7.9	0.001	0.002	0.001	0.002	0.002	0.001	0.002	0.001	0.001	0.002	0.002
8.1	0.001	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002
8.3	0.001	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002
8.5	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
8.7	0.000	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
8.9	0.000	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Noto											

Note:

The nominal current is 17.4 A.

The stated harmonics are max values of three phases.

OVE-Richtlinie R 25									
Clause	Requirement - Tes	st		Re	esult - Remark		Verdict		
5.2 (6.1.1)	TABLE: Testing	BLE: Testing the symmetry behavior of three-phase inverters							
Model	Hybridpower 12k	W 3ph							
Measurem	ent No.	1	2	3	4		5		
a) 100% no	ominal power±5%	P_{Emax} , $\cos \varphi = 1$							
S _{E60} [VA]: I	L1	3982.12	4001.39	3999.38	3997.43	40	000.54		
S _{E60} [VA]: I	L2	3977.68	3992.65	3981.64	3991.8	39	998.08		
S _{E60} [VA]: I	L3	3983.91	4004.3	3999.61	4005.91	39	998.69		
S _{E60} [VA]:	L1 - L2	4.44	8.74	17.74	5.63		2.46		
S _{E60} [VA]:	L2 - L3	6.23	11.65	17.97	14.11		0.61		
S _{E60} [VA]:	L3 - L1	1.79	2.91	0.23	8.48		1.85		
cos φ _{E60} m	ax.:			0.999					
Max. Asym	nmetry [VA]:			17.97					
b) 100% no	ominal power±5%	P_{Emax} , $\cos \varphi = r$	maximum under	-excited (i)					
S _{E60} [kVA]:	: L1	4385.02	4376.72	4399.97	4371.11	4371.11 43			
S _{E60} [VA]: I	L2	4360.78	4360.71	4390.13	4355.94	4355.94 43			
S _{E60} [VA]: I	L3	4374.33	4368.35	4384.1	4362.78	43	357.38		
S _{E60} [VA]:	L1 - L2	24.24	16.01	9.84	15.17		9.96		
S _{E60} [VA]:	L2 - L3	13.55	7.64	6.03 6.84			10.9		
S _{E60} [VA]:	L3 - L1	10.69	8.37	15.87	8.33		0.94		
cos φ _{E60} m	ax.:	0.807 _{under-excited}							
Max. Asym	nmetry [VA]:	24.24							
c) 100% no	ominal power±5%	P_{Emax} , $\cos \varphi = r$	naximum over-e	excited (c)					
S _{E60} [VA]: I	L1	4373.78	4388.27	4373.52	4359.17	43	392.01		
S _{E60} [VA]: I	L2	4384.14	4391.98	4364.89	4366.92	44	409.83		
S _{E60} [VA]: I	L3	4379.23	4387.14	4373.54	4371.86	44	412.09		
S _{E60} [VA]:	L1 - L2	10.36	3.71	8.63	7.75	•	17.82		
S _{E60} [VA]:	L2 - L3	4.91	4.84	8.65	4.94		2.26		
S _{E60} [VA]:	L3 - L1	5.45	1.13	0.02	12.69	2	20.08		
cos φ _{E60} m	ax.:			0.806 _{over-exc}	ited				
Max. Asym	Max. Asymmetry [VA]: 20.08								
Measurem	ent No.	1	2	3	4		5		
d) 50% nominal power±5% P _{Emax} , cos φ = 1;									
S _{E60} [VA]: I	L1	2003.21	1995.83	1999.25	2001.05	19	97.11		
S _{E60} [VA]: I	L2	2008.17	2002.1	2005.44	1995.97	2003.68			
S _{E60} [VA]: I	L3	2012.43	2010.86	2018.41	2018.67	20	11.31		
S _{E60} [VA]:	L1 - L2	4.96	6.27	6.19	5.08	(6.57		

Page 101 of 243 Report No.: 6134610.50

	T		OVE-Richtlinie R	25			T		
Clause	Requirement - Tes	st		Result - Remark			Verdict		
S _{E60} [VA]:	: L2 - L3	4.26	8.76	12.97	22.7	7.63			
S _{E60} [VA]: L3 - L1		9.22	15.03	19.16	17.62		14.2		
cos φ _{E60} r	max.:			0.999					
Max. Asy	mmetry [VA]:			22.7					
e) 50% no	ominal power±5% F	P_{Emax} , $\cos \varphi = m$	aximum under-e	excited (i)					
S _{E60} [VA]:	: L1	2490.68	2482.54	2492.88	2490.7	24	77.89		
S _{E60} [VA]:	: L2	2480.04	2472.5	2461.54	2478.85	24	77.82		
S _{E60} [VA]:	: L3	2488.28	2489.94	2486.8	2492.13	24	79.67		
S _{E60} [VA]:	: L1 - L2	10.64	10.04	31.34	11.85	(0.07		
S _{E60} [VA]:	: L2 - L3	8.24	17.44	25.26	13.28	1.85			
S _{E60} [VA]:	: L3 - L1	2.4	7.4	6.08	1.43	1.78			
cos φ _{E60} r	max.:	0.807under-excited							
Max. Asy	mmetry [VA]:	31.34							
f) 50% no	ominal power±5% P	P_{Emax} , $\cos \varphi = ma$	aximum over-ex	cited (c)					
S _{E60} [VA]:	: L1	2486.00	2491.60	2488.32	2482.45	24	72.74		
S _{E60} [VA]:	: L2	2495.88	2496.66	2500.73	2490.53	24	86.79		
S _{E60} [VA]:	: L3	2508.52	2497.8	2511.89	2502.86	24	91.78		
S _{E60} [VA]:	: L1 - L2	9.88	5.06	12.41	8.08	1	4.05		
S _{E60} [VA]:	: L2 - L3	12.64	1.14	11.16	12.33		4.99		
S _{E60} [VA]:	: L3 - L1	22.52	6.20	23.57	20.41	1	9.04		
cos φ _{E60} r	max.:			0.804 _{over-excited}					
Max. Asy	mmetry [VA]:			23.57					
Limit [VA]]:		≤ 5°	% S _{Emax} and 4,6	kVA				
Note:									

The test is passed when the maximum value of preceding measurements a) to f) does not exceed the 5% SEmax value and 4.6 kVA.

					age 102 01 243		Report in		1
				OV	E-Richtlinie R 2	25			
Cla	use I	Requ	irement - Test			Result	- Remark		Verdict
5.3.2 (5.3.3) TABLE: Measurement of active and reactive power working area (PQ diagram)							Р		
Model Hybridpower 12kW 3ph									
				Measureme	ent carried out	at 0.86 U _n			
Q	set-poi	nt	P set-point	Active	Apparent	Q measured	Voltage		easured
a)	(%Sn) 0		(%Pn) 100%	power (W) 11875.69	power (VA) 11877.45	(Var) -196.85	(Vac) 198.01		cos φ 1.000
b)	43.6%	(c)	Max possible	10622.00	11850.06	-5253.11	197.96		0.896
c)	43.6%	` '	Max possible	10535.47	11794.42	5301.65	198.02		0.893
d)	43.6%	• •	20%-30%	2900.15	5970.01	-5218.23	197.97		0.486
e)	43.6%	` '	20%-30%	2916.33	6024.62	5271.70	197.90		0.484
f)	43.6%	` '	10%-20%	1678.28	5549.92	-5290.04	197.86		0.302
g)	43.6%	` '	10%-20%	1696.35	5460.40	5190.17	197.93		0.311
h)	43.6%		0-10%	829.47	5321.16	-5255.97	197.88		0.156
i)	43.6%		0-10%	842.80	5301.00	5233.22	197.87		0.159
''	40.070	(1)	0 1070		ment carried o		107.07		0.100
Q	set-poi	nt	P set-point (%Pn)	Active power (W)	Apparent power (VA)	Q measured (Var)	Voltage (Vac)		easured cos φ
a)	0		100%	11985.62	11985.73	-8.24	230.21		1.000
b)	43.6%	(c)	Max possible	11836.57	12959.43	-5275.79	230.17		0.913
c)	43.6%	` '	Max possible	11767.17	12882.10	5241.73	230.24		0.913
d)	43.6%	٠,,	20%-30%	3205.24	6127.44	-5222.24	230.12		0.523
e)	43.6%		20%-30%	3213.91	6164.20	5260.04	230.11		0.521
f)	43.6%	(c)	10%-20%	1711.12	5545.06	-5274.44	230.10		0.308
g)	43.6%	(i)	10%-20%	1692.32	5498.30	5231.38	230.07		0.309
h)	43.6%		0-10%	859.41	5306.12	-5236.06	230.09		0.160
i)	43.6%	(i)	0-10%	841.05	5259.08	5191.39	230.03		0.162
		ll entered		Measureme	ent carried out	at 1.09 U _n	<u>'</u>		
Q	set-poi (%Sn)	nt	P set-point (%Pn)	Active power (W)	Apparent power (VA)	Q measured (Var)	Voltage (Vac)		easured cos φ
a)	0		100%	11924.99	11925.14	-4.9	250.83		0.999
b)	43.6%	(c)	Max possible	11856.42	12958.16	-5228.30	250.78		0.915
c)	43.6%	(i)	Max possible	11889.67	13014.23	5291.81	250.80		0.914
d)	43.6%	(c)	20%-30%	2901.75	6007.45	-5260.15	250.71		0.483
e)	43.6%	(i)	20%-30%	2918.16	6004.43	5247.61	250.71		0.486
f)	43.6%	(c)	10%-20%	1688.40	5503.57	-5238.18	250.68		0.307
g)	43.6%	(i)	10%-20%	1709.69	5504.27	5232.00	250.69		0.311
h)	43.6%	(c)	0-10%	836.97	5287.72	-5221.05	250.61		0.158
i)	43.6%	(i)	0-10%	856.51	5338.98	5269.82	250.69		0.160
Not	te:						<u> </u>		

		Page 103 of 243		Report No.: 6	134610.50
		OVE-Richtlinie R 25			
Clause	Requirement - Test		Result -	Remark	Verdict
5.3.3 (5.4.1)	I I // KI F: Cascing at nawar tagg-in atter remate control				Р
Model	Hybridpower 12kW 3ph				
Reducing	the active power from 100%	P _n to 0			
Meas	sured max power [kW]	Ceasing time [s]		Limit [s]	
	12	0.107		5	
Tek 预览		M 1.00 s	[6 3]	
1					
3					
4) 缩放系数:	: 10 X 缩放位置: 4.79 s				emai instinctioni en
		a b		4.664 s 22	1.6 V
- · · · · · · · · · · · · · · · · · · ·					57 V 30.0 V
			:		
_ ^ / / / /	188888888888888888888888888888888888888	$\wedge \wedge $	$\Lambda\Lambda\Lambda\Lambda\Lambda$	\^^^^	$\Lambda\Lambda\Lambda\Lambda$
7111	4	/ 4 7 7 7 7 7 7 7 7 7	$I \lor V \lor V$	<u> </u>	/
:					
1 1. 1. 1. 1.					
$_{\mathbb{Z}}$ $\backslash \backslash \backslash \backslash \backslash \backslash$	$\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}$	∖╎ <mark>╎</mark> ╎╎╎╎╎╎╎┞ <mark>┪</mark> ╾┋╌╾╓╌┈╌╌╾			
AAAA	*****	V			
:					-
4)					
1 500	V 3 20	.0 A 4 10.0 V Z 100ms	1.	.00M次/秒 ② X 0M 点	860 V
				OM 74	

Page 105 of 243

OVE-Richtlinie R 25										
Clause	Requirement	equirement - Test Result - Remark						Verdict		
5.3.4 (5.1.3 & 5.5.2)	TABLE: Ac	ABLE: Active power supply of PGU at over-frequency						Р		
Model	Hybridpowe	ybridpower 12kW 3ph								
Test No. 1:	Test No. 1:									
Power outp	out:				100% P	n				
Starting fre	equency f ₁ :				50.2Hz					
Deactivation f _{stop} :	n threshold			50.2H	lz (Deact	ivated)				
Droop:				5%	(40%P _{ref}	/ Hz)				
Test o	condition			Measure	ement					
f (Hz)	Target P/Pn	f (Hz)	P/P _n	T _{sr_90%} (s)	T _{settling} (s)	T _d (s)	ΔP/P _n	Limit $\Delta P/P_n$		
a) 50	100%	50.00	100.34%				0.34%			
b) 50.25	98%	50.25	98.21%				0.21%			
c) 50.7	80%	50.70	80.03%		2.6		0.03%			
d) 51.15	62%	51.15	62.09%		1.4		0.09%	± 5%		
e) 50.7	80%	50.70	79.97%		3.2		-0.03%			
f) 50.25	98%	50.25	98.23%		5.8		0.23%			
g) 50	100%	50.00	100.04%				0.04%			
Test o	condition		Me	easurement			L	imit		
g) 50 to	o h) 51.65	Discon	nection Time	(ms):	1	70 ms	20	00ms		
h) 51.65 to i) 50.15		Reconnection:				42 min connection	No rec	connection		
i) 50 4	5 to i) 50	Reco	nnection time	e (s):	;	313 s	≥ :	≥ 300s		
i) 50.15 to j) 50		Max. pow	er gradient (%	%P _n /min):	7	7.94%		≤10% P _n /min		

Page 106 of 243

			OVE-F	Richtlinie R	25				
Clause	Requirement	- Test				Result - Rem	ark	Verdict	
5.3.4 (5.1.3 & 5.5.2)	TABLE: Ac	ABLE: Active power supply of PGU at over-frequency						Р	
Model	Hybridpowe	ybridpower 12kW 3ph							
Test No. 2:									
Power outp	out:				50% P _n				
Starting fre	equency f ₁ :				50.2Hz				
Deactivation f _{stop} :	n threshold			50.2H	Iz (Deact	ivated)			
Droop:				5%	(40%Pref	/ Hz)			
Test	condition			Measure	ement				
f (Hz)	Target P/P _n	f (Hz)	P/P _n	T _{sr_90%} (s)	T _{settling} (s)	T _d (s)	ΔP/P _n	Limit $\Delta P/P_n$	
a) 50	50%	50.00	50.12%				0.12%		
b) 50.25	49%	50.25	47.86%	-			-1.14%		
c) 50.7	40%	50.70	40.09%		1.8		0.09%		
d) 51.15	31%	51.15	31.21%		1.8		0.21%	± 5%	
e) 50.7	40%	50.70	39.76%		2.6		-0.24%		
f) 50.25	49%	50.25	47.90%	-	7.8		-1.10%		
g) 50	100%	50.00	99.77%				-0.23%		
Test	condition		Me	asurement			L	imit	
g) 50 to	o h) 51.65	Discon	nection Time	(ms):	1	178 ms		00ms	
h) 51.65 to i) 50.15		Reconnection:			No reconnection		No reconnection		
i) 50 1	5 to i) 50	Reco	nnection time	(s):	318 s		≥ 300s		
i) 50.15 to j) 50		Max. pow	er gradient (%	%P₁/min):	7.88%		≤10% P _n /min		

		Page 107 of 243	Report No.: 6	134610.50
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Test 2: Measurement a) to j): Active power output 40% Pn and 60% Pn 120% 51.8 51.6 100% 51.4 80% 51.2 51 [Z 50.8 s.05 50.6 [Hz] 60% P/P_n [%] 40% 50.4 20% 50.2 0% 50 -20% 49.8 500 1000 1500 2000 2500 3000 3500 Time [s] P/Pn ——FreqU-1-Total

Page 108 of 243 Report No.: 6134610					
	OVE-Richtlinie R 25				
Clause	Requirement - Test	Result - Remark	Verdict		

5.3.5 (5.1.5)	TABLE: Active power reduction at underfrequency	Р
Model	Hybridpower 12kW 3ph	

Voltage	U _n =230Vac			
Test sequence	Frequency	Output power(W)	ΔP/Pм per 1 Hz	Reduction P rate per Hz limits
Test a)	50.0Hz	11991.87	0	0%
Test b)	49.5Hz	11991.12	0	0%
Test c)	47.6Hz	11986.61	0	2% P _n

Test:

The test must be carried out at 100% Pn,

Measurements are carried out at the following operating points:

- a) nominal frequency±0.01 Hz; b) Nominal frequency 0.5 Hz for synchronous EZE, nominal frequency 1 Hz for non-synchronous EZE;
- c) a point between the nominal frequency -2.4 Hz to -2.5 Hz.

Figure 3: Permissible reduction in the maximum active power output with decreasing frequency

Page 109 of 243 Report No.: 613					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

5.3.6.1.1 (5.3.6)	TABLE: Test sequence for the static behaviour of the P (U) control	Р
Model	Hybridpower 12kW 3ph	

P (U) derating threshold set @ 110% U_n

` ,		"				
Test voltage (%Un)	Measured voltage (V)	Measured current (A)	Measured P (W)	Measured Q (Var)	Target P / P _n (%)	Deviation ΔP / P _n (%)
100	230.07	52.72	12123.3	-45.5	100%	1.03%
109	250.76	48.36	12121.0	82.1	100%	1.01%
110	253.06	46.94	11871.8	106.2	100%	-1.07%
111	255.33	24.68	6296.1	96.0	50%	2.47%
112	257.59	2.72	696.9	47.7	0%	5.81%
113	259.89	0.78	37.7	21.5	0%	0.31%
112	257.57	2.61	671.7	37.0	0%	5.60%
111	255.36	23.79	6065.8	99.8	50%	0.55%
110	253.10	46.51	11853.2	123.1	100%	-1.22%
109	250.81	48.32	12111.9	108.1	100%	0.93%
100	230.10	52.71	12123.8	-33.5	100%	1.03%

Note:

The active power values measured according to 5.3.6.1.1 (30 s mean values) in stationary operation are within the tolerance band of \pm 10% P_n and \pm 1% U_n of the specified P (U) characteristic.

Page 110 of 243 Report No.: 61346					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

5.3.6.1.2 (5.3.6)	TABLE: Test sequence for the dynamic behaviour of the P (U) control	
Model	Hybridpower 12kW 3ph	

Threshold set @ 110% Un

	- ''				
Test voltage	Measured	Measured P	Response time	Time constant	Target
(%U _n)	voltage (V)	(W)	T _{95%} (s)	T _{au} (s)	P/P _n
100	230.07	12026.3		5	100.0%
109	250.89	11985.7		5	100.0%
113	260.11	37.5	14.4	5	0.0%
109	250.89	11988.7	15.0	5	100.0%
100	230.21	11961.3		5	100.0%
100	230.07	12026.3		5	100.0%

Table 1 - Test procedure for the dynamic behavior of the P (U) control

Step	Time	Voltage (% <i>U</i> _n)	Specification of primary power or active power	Comment
1 (d)	$t_1 = 0$	100 %	> 90 % P _n	EZE in operation; Start of recording
2 (e)	$t_2 = t_1 + 50 \text{ s}$	109 %	> 90 % P _n	P (U) control may not yet respond
3 (f)	$t_3 = t_2 + 50 \text{ s}$	113 %	> 90 % P _n	P (U) control regulates power to 0 or the minimum possible power.
4 (g)	$t_4 = t_3 + 50 \text{ s}$	109 %	> 90 % P _n	P (U) regulation canceled
5 (h)	$t_5 = t_4 + 50 \text{ s}$	100 %	> 90 % P _n	
6 (i)	$t_6 = t_5 + 50 \text{ s}$	100 %	> 90 % P _n	End of recording

		3	<u>'</u>		
OVE-Richtlinie R 25					
	Clause	Requirement - Test	Result - Remark	Verdict	

Figure 6 - Exemplary step response in the test sequence for the dynamic behavior of the P (U) control

Table 2 - Calculation of the tolerance bands for evaluating the dynamic behavior of the P (U) control in the event of a setpoint jump from an active power P_1 to an active power P_2

Active power increase	Upper tolerance band:	for all $t: P_2 - (P_2 - P_1) \cdot e^{(-t/Tau)} + 0.10 \cdot P_n$
$P_2 > P_1$	Lower tolerance band:	for $t < 3 \text{ s}: P_1 - 0.10 \cdot P_n$
		for $t \ge 3$ s: $P_2 - (P_2 - P_1) \cdot e^{(-t + 3s)/Tau} - 0.10 \cdot P_n$
Active power decrease	Upper tolerance band:	for $t \le 3$ s: $P_1 + 0.10 \cdot P_n$
$P_2 < P_1$		for $t \ge 3$ s: $P_2 = (P_2 = P_1) \cdot e^{([-t + 3 \cdot s] / Tau)} + 0.10 \cdot P_n$
	Lower tolerance band:	for all $t: P_2 - (P_2 - P_1) \cdot e^{(-t/Tau)} = 0.10 \cdot P_n$

Figure 7 illustrates the tolerance limits using a setpoint jump in active power from P_1 = 100% P_n to a setpoint value of P_2 = 0% P_n .

Figure 7 - Exemplary evaluation of the transient response of the P (U) control with permissible tolerances

Page 112 of 243 Report No.: 61346					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

Page 113 of 243 Re						Report No.:	6134610.50			
OVE-Richtlinie R 25										
Claus	se F	Requ	irement -	Test				Result - Rem	ark	Verdict
5.3.7 (5.3.4) TABLE: Reactive power control according to setting fixed cos					ed cos φ		Р			
Mode	el	Hybr	idpower 1	2kW 3ph						
		Te	st condition	n		Measu	rement		Deviation	Limitation
No.	Cos	φ	Р	U/U _n [%]	U [V]	P [W]	Q [Var]	Cos φ	Δ Cos φ	Δ Cos φ
			50%Pn	91%	209.35	6032.45	2873.00	0.903	0.003	0.01
	0.90 (c)		Sn	9170	209.46	11472.1	5531.42	0.901	0.001	0.01
٥)		(0)	50%Pn	100%	230.05	6034.50	2863.54	0.903	0.003	0.01
a)		(C)	Sn		230.15	11646.9	5563.24	0.902	0.002	0.01
			50%Pn	109%	250.77	6033.41	2920.71	0.900	0.000	0.01
			Sn	10976	250.82	11755.0	5547.69	0.904	0.004	0.01
			50%Pn	91%	209.44	5998.46	-2861.72	0.902	0.002	0.01
			Sn	9170	209.51	11438.6	-5516.30	0.901	0.001	0.01
b)	0.90	(i)	50%Pn	100%	230.14	6009.57	-2910.00	0.900	0.000	0.01
D)	0.90	(1)	Sn	100 /6	230.21	11679.5	-5610.99	0.901	0.001	0.01
			50%Pn	109%	250.58	6006.48	-2920.69	0.899	-0.001	0.01
			Sn	10970	250.67	11796.0	-5658.81	0.902	0.002	0.01
Note	: The r	neas	surement v	value in ab	ove table a	re 30 s mear	n values.			

Page 114 of 243

			· · · · · · · · · · · · · · · · · · ·	
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

					Page 11	5 of 243			Repoi	rt No.: 61	34610.50
				C	VE-Richt	linie R 25	5				
Clause	Require	ement - T	est				F	Result - Re	emark		Verdict
5.3.8 (5.3.4.1) (5.7.5)	TABLE	E: Power	related (control n	node – c	os φ (P)					Р
Model	Hybrid	oower 12	kW 3ph								
Test a): d	isplace	ment fac	tor activ	e power	characte	ristic cu	rve cos	φ (P)			
30 s mear	value	10% →	100% PE	max							
P/P _n [%]		10	20	30	40	50	60	70	80	90	100
U [V]:		230.28	230.30	230.32	230.35	230.37	230.41	230.43	230.48	230.50	230.50
P _{E30} [kW]:		1.22	2.39	3.63	4.84	6.04	7.26	8.47	9.68	10.86	12.03
P _{E30} of P _{E1}	P _{E30} of P _{Emax} [%]: 10.16 19.95 30.28 40.35 50.38 60.49 70.59 80.71 90.53						100.24				
Q _{E30} [kVA	Q _{E30} [kVAr]: 0.274 0.319 0.291 0.330 -0.366 -1.460 -2.433 -3.478 -4.579						-5.796				
cos φ _{E30} :		0.975	0.991	0.997	0.998	0.998	0.980	0.961	0.941	0.921	0.901
COS φ _{setpoir}	nt:	1.00	1.00	1.00	1.00	0.999	0.979	0.959	0.938	0.919	0.90
30 s mear	n value	100%	→ 10% P _E	max							
P/P _n [%]		100	90	80	70	60	50	40	30	20	10
U [V]:		230.51	230.50	230.48	230.43	230.40	230.37	230.35	230.32	230.30	230.28
P _{E30} [kW]:		12.03	10.88	9.68	8.47	7.26	6.04	4.84	3.63	2.39	1.22
P _{E30} of P _{E1}	max [%]:	100.28	90.70	80.69	70.59	60.50	50.36	40.35	30.29	19.96	10.16
Q _{E30} [kVA	r]:	-5.798	-4.588	-3.476	-2.433	-1.460	-0.367	0.327	0.291	0.319	0.273
cos φ _{E30} :		0.901	0.921	0.941	0.961	0.980	0.998	0.998	0.997	0.991	0.975
cos φ _{setpoir}	nt:	0.90	0.919	0.939	0.959	0.979	0.999	1.00	1.00	1.00	1.00
Limit cos	φ _{E30} :					cos φ _{setp}	oint ± 0.01			•	•
Note: The cos	s φ(P) coi	ntrol shoul	d be deact	ivated by	default.						
		0,9/	0,95*)	0.5		11 / /	P/P _{max}				

*) depending on the required Q capability Figure 12: Displacement factor / active power characteristic curve $\cos \varphi(P)$ in the low-voltage network

0.88

100% 110%

	OVE-Richtlinie R 25	'	
	OVE-RICHUINIE R 25		
Clause	Requirement - Test	Result - Remark	Verdict

20%

10%

30%

40%

50%

P/P_n [%]

QE30 [kVAr] — cos φE30 — cos φresponse — — cos φ_limit+ — — cos φ_limit-

60%

70%

80%

90%

-10

0%

	Pa	Page 117 of 243			Report No.: 6134610.50		
	OVE	-Richtlinie R 25					
Require	ement - Test		Result - Re	mark	Verdict		
TABLE	: Power related control mod	e – cos φ (P)			Р		
Hybridp	oower 12kW 3ph						
emonst	rate the settling time						
value	$20\% \rightarrow 50\% \rightarrow 90\% \ P_{Emax}$						
	20	50		90			
	230.09	230.11		230.14			
	2.43	5.96		10.81			
max [%]:	20.25	49.67		90.08			
·]:	0.191	0.264		-4.31			
	0.997	0.999		0.929			
t:	1.000	1.000		0.920			
	20% → 50% P _{Emax} :	1					
	$50\% \to 90\% \ P_{\text{Emax}}$: 1						
value	90% → 50% → 20% P _{Emax}						
	90	50		20			
	230.11	230.11		230.08			
	10.81	5.97		2.43			
max [%]:	90.08	49.75		20.25			
·]:	-4.32	0.278		0.191			
	0.928	0.999		0.997			
t:	0.920	1.000		1.000			
ΔT [s]: 90% \rightarrow 50%			1				
	50% → 20% P _{Emax} :		1				
]:		10					
P E30:		$\cos \varphi_{\text{setpoint}} \pm 0.$	02				
	TABLE	Requirement - Test TABLE: Power related control mode Hybridpower 12kW 3ph emonstrate the settling time value 20% → 50% → 90% P _{Emax} 20	OVE-Richtlinie R 25 Requirement - Test TABLE: Power related control mode – cos φ (P) Hybridpower 12kW 3ph emonstrate the settling time 1 value 20% → 50% → 90% P _{Emax} 20 50 230.09 230.11 2.43 5.96 max [%]: 20.25 49.67 max [%]: 0.191 0.264 0.997 0.999 mi: 1.000 1.000 20% → 50% P _{Emax} : 50% → 90% P _{Emax} : 1 value 90% → 50% → 20% P _{Emax} 1 value 90% → 50% → 20% P _{Emax} 1 10.81 5.97 max [%]: 90.08 49.75 max [%]: 90.08 0.999 mi: 0.928 0.999 mi: 0.920 1.000 90% → 50% P _{Emax} : 50% → 20% P _{Emax} : 50% → 20% P _{Emax} :	OVE-Richtlinie R 25 Requirement - Test Result - Rei TABLE: Power related control mode – cos φ (P) Hybridpower 12kW 3ph emonstrate the settling time 1 value 20% → 50% → 90% P _{Emax} 20 50 230.09 230.11 2.43 5.96 max [%]: 20.25 49.67 1]: 0.191 0.264 1.0997 0.999 11: 1.000 1.000 20% → 50% P _{Emax} : 1 50% → 90% P _{Emax} : 1 1 value 90% → 50% → 20% P _{Emax} 1 10.81 5.97 1 10.81 5.97 1 10.81 5.97 1 10.928 0.999 11: 0.920 1.000 90% → 50% P _{Emax} : 1 50% → 20% P _{Emax} : 1 1 50% → 90% D _{Emax} : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OVE-Richtlinie R 25 Requirement - Test Result - Remark TABLE: Power related control mode – cos φ (P) Hybridpower 12kW 3ph emonstrate the settling time 1 value 20% → 50% → 90% P _{Emax} 230.09 230.11 230.14 230.09 230.11 230.14 2.43 5.96 10.81 1.81 1.82 1.81 1.84 2.43 1.999 0.929 1.900 1.000 0.920 20% → 50% P _{Emax} : 1 1.900 50 20 230.11 230.08 1.000 2.025 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.		

When $\cos \phi$ noise is superimposed due to island grid detection, and the $\cos \phi$ tolerance band ± 0.02 is violated for the nominal value after transient due to this noise, then this parasitic induction caused by island grid detection can be neglected.

Page 118 of 243 Report No.: 613461						
		OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict		

		Page 119 of 243		Report No.: 6	134610.50	
		OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Rema	ark	Verdict	
5.3.9 (5.3.4)	I I ARI E: Reactive nower control according to setting "Fived ()"					
Model:	Hybridpower 12kW 3ph					

No	Т	est conditi	ion		Measu	rement		Deviation	Limitation
No.	Q/P _n	Р	U/U _n [%]	U [V]	P [kW]	Q [kVar]	Cos φ	Δ Q / S _n [%]	ΔQ/S _n
		50%Pn	010/	209.43	6.01	5.26	0.753	0.22%	≤ ±4%
		Sn	91%	209.52	11.57	5.21	0.912	-0.15%	≤ ±4%
2)	0.426	50%Pn	1000/	230.12	6.02	5.21	0.756	-0.22%	≤ ±4%
a)	0.436	Sn	100%	230.24	11.79	5.32	0.912	0.72%	≤ ±4%
		50%Pn	109%	250.91	6.02	5.29	0.751	0.46%	≤ ±4%
		Sn		250.88	11.91	5.23	0.915	0.00%	≤ ±4%
		50%Pn	91%	209.41	5.96	-5.25	-0.750	-0.14%	≤ ±4%
		Sn		209.48	11.67	-5.21	-0.913	0.20%	≤ ±4%
b)	-0.436	50%Pn	100%	230.08	5.96	-5.28	-0.748	-0.41%	≤ ±4%
b)	-0.430	Sn	100%	230.17	11.76	-5.27	-0.913	-0.30%	≤ ±4%
		50%Pn	1000/	250.79	5.97	-5.29	-0.749	-0.46%	≤ ±4%
	-	Sn	109%	250.74	11.88	-5.13	-0.918	0.83%	≤ ±4%

The test is passed if all Q values (30 s average) do not deviate from the specification by more than $\pm 4\%$

In the case of EZE with generators directly connected to the grid, which cannot regulate reactive power due to the principle, such as asynchronous generators, and therefore use non-controllable fixed capacities, the tolerance band extends from $\pm 4\%$ P_n to $\pm 10\%$ P_n. This device type is only used at U_n rated.

Page 120 of 243

		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Fage 121 01 243 Report No.: 0134010.30										
		OV	E-Richtlinie F	R 25						
Requiremen	t - Test				Result - Rem	ark	Verdict			
	•		•		` '	d active	Р			
Hybridpowe	r 12kW 3ph									
tion		Measu	irement		Target	Deviation	Limit			
P/P _n	U (V)	I (A)	P (W)	Q (Var)	Q/S _n	ΔQ/S _n (%)	$\Delta Q/S_n$			
m) with prin	nary energy	at 100% P _n	(or setting p	ower setpo	int EUT at 10	0% P _n):				
100%	230.22	52.49	12080.1	355.8	0	2.97	≤ ±4%			
100%	232.53	51.93	12070.9	357.0	0	2.97	≤ ±4%			
100%	234.84	51.67	12127.8	358.3	0	2.99	≤ ±4%			
100%	237.14	51.08	12107.3	361.1	0	3.01	≤ ±4%			
100%	239.42	50.66	12124.7	364.5	0	3.04	≤ ±4%			
100%	241.72	50.11	12106.8	377.8	0	3.15	≤ ±4%			
100%	244.01	49.14	11852.0	-1819.5	-14.6%	-0.56	≤ ±4%			
100%	246.31	48.20	11281.1	-3696.7	-29.1%	-1.71	≤ ±4%			
100%	248.60	47.32	10501.1	-5302.0	-43.6%	-0.58	≤ ±4%			
100%	250.90	46.85	10493.2	-5298.2	-43.6%	-0.55	≤ ±4%			
100%	253.19	40.84	8859.6	-5323.6	-43.6%	-0.76	≤ ±4%			
100%	255.45	24.04	2751.3	-5481.6	-43.6%	-2.08	≤ ±4%			
100%	257.75	0.79	-37.9	61.6	0	0.51	≤ ±4%			
100%	260.05	0.77	-38.0	60.8	0	0.51	≤ ±4%			
100%	257.75	0.77	-37.5	59.9	0	0.50	≤ ±4%			
100%	255.46	23.97	2765.9	-5463.4	-43.6%	-1.93	≤ ±4%			
100%	253.20	39.72	8528.2	-5329.4	-43.6%	-0.81	≤ ±4%			
100%	250.91	46.54	10410.5	-5288.4	-43.6%	-0.47	≤ ±4%			
100%	248.61	47.28	10490.2	-5302.0	-43.6%	-0.58	≤ ±4%			
100%	246.32	48.17	11266.7	-3717.0	-29.1%	-1.88	≤ ±4%			
100%	244.03	49.19	11860.9	-1842.5	-14.6%	-0.75	≤ ±4%			
100%	241.73	49.11	11864.9	370.2	0	3.08	≤ ±4%			
100%	239.44	49.55	11857.7	356.3	0	2.97	≤ ±4%			
100%	237.13	50.02	11855.4	352.5	0	2.94	≤ ±4%			
100%	234.83	50.50	11852.7	349.6	0	2.91	≤ ±4%			
100%	232.53	50.97	11846.2	346.9	0	2.89	≤ ±4%			
100%	230.24	51.46	11843.7	343.3	0	2.86	≤ ±4%			
100%	227.94	51.96	11839.1	343.1	0	2.86	≤ ±4%			
100%	225.64	52.48	11837.0	342.6	0	2.86	≤ ±4%			
100%	223.35	53.01	11835.1	343.0	0	2.86	≤ ±4%			
100%	221.05	53.60	11843.1	342.8	0	2.86	≤ ±4%			
	TABLE: Vo power conference in the power conference in	Power control P (U) -1 Hybridpower 12kW 3ph tion	TABLE: Voltage-control functions power control P (U)) -Test proced Hybridpower 12kW 3ph tion Measu P/Pn U (V) I (A) 230.22 52.49 100% 230.22 52.49 100% 234.84 51.67 100% 237.14 51.08 100% 244.01 49.14 100% 244.01 49.14 100% 248.60 47.32 100% 255.45 24.04 100% 255.45 24.04 100% 257.75 0.79 100% 257.75 0.77 100% 257.75 0.77 100% 250.90 46.85 100% 250.90 46.85 100% 250.90 46.85 100% 257.75 0.77 100% 257.75 0.77 100% 257.75 0.77 100% 250.91 46.54 100% 244.03 49.19 100% 244.03 49.19 100% 244.03 49.19 100% 244.03 49.19 100% 239.44 49.55 100% 239.44 49.55 100% 239.44 49.55 100% 239.44 49.55 100% 230.24 51.46 100% 227.94 51.96 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 225.64 52.48 100% 223.35 53.01	OVE-Richtlinie FRequirement - Test	OVE-Richtlinie R 25 Requirement - Test TABLE: Voltage-control functions (reactive power control P (U)) - Test procedure for static behavio Hybridpower 12kW 3ph tion Measurement P/Pn U (V) I (A) P (W) Q (Var) m) with primary energy at 100% Pn (or setting power setpons) 100% 230.22 52.49 12080.1 355.8 100% 232.53 51.93 12070.9 357.0 100% 234.84 51.67 12127.8 358.3 100% 237.14 51.08 12107.3 361.1 100% 239.42 50.66 12124.7 364.5 100% 241.72 50.11 12106.8 377.8 100% 244.01 49.14 11852.0 -1819.5 100% 246.31 48.20 11281.1 -3696.7 100% 253.19 40.84 8859.6 -5323.6 100% 253.19 <	Coverage	Cove-Richtlinie R 25 Result - Remark			

rage 122 01 243 Report No.: 0134010.3										
,			OV	E-Richtlinie F	R 25					
Clause	Requiremen	t - Test				Result - Rema	ark	Verdict		
5.3.10.1.1 (5.3.4.2 & 5.3.6)				s (reactive p lure for stati		trol Q (U) and ur	l active	Р		
Model	Hybridpowe	r 12kW 3ph								
Test condi	ition		Measu	irement		Target	Deviation	Limit		
U/U _n	P/P _n	U (V)	I (A)	P (W)	Q (Var)	Q/S _n	∆Q/S _n (%)	$\Delta Q/S_n$		
95%	100%	218.75	54.34	11836.0	1097.4	10.9%	-1.76	≤ ±4%		
94%	100%	216.46	55.85	11831.5	2481.6	21.8%	-1.12	≤ ±4%		
93%	100%	214.16	57.32	11644.4	3885.3	32.7%	-0.32	≤ ±4%		
92%	100%	211.87	58.20	11134.5	5296.2	43.6%	0.53	≤ ±4%		
91%	100%	209.56	58.82	10991.7	5577.3	43.6%	2.88	≤ ±4%		
90%	100%	207.27	59.46	10983.3	5588.6	43.6%	2.97	≤ ±4%		
89%	100%	204.97	60.12	10991.8	5570.7	43.6%	2.82	≤ ±4%		
88%	100%	202.66	60.68	10967.4	5563.5	43.6%	2.76	≤ ±4%		
87%	100%	200.37	61.45	10988.9	5553.2	43.6%	2.68	≤ ±4%		
86%	100%	198.08	62.03	10970.2	5534.0	43.6%	2.52	≤ ±4%		
85%	100%	195.78	62.75	10969.0	5530.9	43.6%	2.49	≤ ±4%		
86%	100%	198.07	62.03	10961.6	5548.5	43.6%	2.64	≤ ±4%		
87%	100%	200.37	61.42	10984.5	5546.6	43.6%	2.62	≤ ±4%		
88%	100%	202.67	60.74	10983.4	5560.5	43.6%	2.74	≤ ±4%		
89%	100%	204.97	60.18	11003.9	5574.9	43.6%	2.86	≤ ±4%		
90%	100%	207.27	59.49	10989.3	5592.8	43.6%	3.01	≤ ±4%		
91%	100%	209.57	58.91	10999.7	5606.6	43.6%	3.12	≤ ±4%		
92%	100%	211.87	58.31	11137.8	5345.6	43.6%	0.95	≤ ±4%		
93%	100%	214.17	57.32	11644.6	3884.3	32.7%	-0.33	≤ ±4%		
94%	100%	216.47	55.86	11837.3	2470.6	21.8%	-1.21	≤ ±4%		
95%	100%	218.76	54.31	11833.5	1069.7	10.9%	-1.99	≤ ±4%		
96%	100%	221.05	53.57	11836.1	352.0	0	2.93	≤ ±4%		
97%	100%	223.35	53.02	11836.6	352.7	0	2.94	≤ ±4%		
98%	100%	225.65	52.51	11844.3	349.5	0	2.91	≤ ±4%		
99%	100%	227.95	51.96	11838.6	349.0	0	2.91	≤ ±4%		
100%	100%	230.24	51.48	11847.1	346.7	0	2.89	≤ ±4%		
Repeat ste	eps e) to m) v	with primary	energy at 2	0% P _n (or se	tting power	r setpoint EU7	at 20% P _n):			
100%	20%	230.08	11.22	2574.1	202.1	0	1.68	≤ ±4%		
101%	20%	232.38	11.10	2571.9	198.0	0	1.65	≤ ±4%		
102%	20%	234.68	10.94	2560.2	197.0	0	1.64	≤ ±4%		
103%	20%	236.99	11.09	2620.8	195.3	0	1.63	≤ ±4%		
104%	20%	239.30	10.97	2618.1	194.9	0	1.62	≤ ±4%		

rage 123 01 243 Report No.: 013401										
			OV	E-Richtlinie F	R 25					
Clause	Requiremen	t - Test				Result - Rem	ark	Verdict		
5.3.10.1.1 (5.3.4.2 & 5.3.6)				s (reactive p lure for stat		rol Q (U) and ur	d active	Р		
Model	Hybridpowe	r 12kW 3ph								
Test condit	tion		Measu	ırement		Target	Deviation	Limit		
U/U _n	P/P _n	U (V)	I (A)	P (W)	Q (Var)	Q/S _n	ΔQ/S _n (%)	ΔQ/S _n		
105%	20%	241.60	10.86	2615.8	196.2	0	1.63	≤ ±4%		
106%	20%	243.90	12.52	2602.5	-1596.8	-14.6%	1.29	≤ ±4%		
107%	20%	246.19	17.96	2580.4	-3589.9	-29.1%	-0.82	≤ ±4%		
108%	20%	248.50	24.50	2552.5	-5526.9	-43.6%	-2.46	≤ ±4%		
109%	20%	250.80	24.26	2550.9	-5524.0	-43.6%	-2.43	≤ ±4%		
110%	20%	253.10	24.00	2552.4	-5511.3	-43.6%	-2.33	≤ ±4%		
111%	20%	255.41	23.73	2552.5	-5497.9	-43.6%	-2.22	≤ ±4%		
112%	20%	257.70	0.77	-37.6	-195.1	0	-1.63	≤ ±4%		
113%	20%	260.00	0.77	-37.7	-197.5	0	-1.65	≤ ±4%		
112%	20%	257.71	0.86	-37.4	-219.0	0	-1.82	≤ ±4%		
111%	20%	255.42	23.68	2554.5	-5481.1	-43.6%	-2.08	≤ ±4%		
110%	20%	253.12	23.97	2553.7	-5502.6	-43.6%	-2.25	≤ ±4%		
109%	20%	250.83	24.23	2552.2	-5515.4	-43.6%	-2.36	≤ ±4%		
108%	20%	248.53	24.50	2552.2	-5528.8	-43.6%	-2.47	≤ ±4%		
107%	20%	246.23	18.14	2585.2	-3641.6	-29.1%	-1.25	≤ ±4%		
106%	20%	243.93	12.71	2602.8	-1683.9	-14.6%	0.57	≤ ±4%		
105%	20%	241.64	10.94	2615.8	377.1	0	3.14	≤ ±4%		
104%	20%	239.34	10.99	2618.3	236.6	0	1.97	≤ ±4%		
103%	20%	237.04	11.09	2618.2	221.7	0	1.85	≤ ±4%		
102%	20%	234.73	11.21	2622.9	199.9	0	1.67	≤ ±4%		
101%	20%	232.44	11.33	2622.3	228.5	0	1.90	≤ ±4%		
100%	20%	230.14	11.48	2626.7	290.2	0	2.42	≤ ±4%		
99%	20%	227.84	11.58	2627.4	232.4	0	1.94	≤ ±4%		
98%	20%	225.55	11.69	2628.1	214.7	0	1.79	≤ ±4%		
97%	20%	223.25	11.82	2629.1	217.1	0	1.81	≤ ±4%		
96%	20%	220.95	11.94	2629.0	225.2	0	1.88	≤ ±4%		
95%	20%	218.66	13.35	2627.0	1274.3	10.9%	-0.28	≤ ±4%		
94%	20%	216.36	17.49	2618.2	2731.6	21.8%	0.96	≤ ±4%		
93%	20%	214.07	22.93	2601.6	4162.2	32.7%	1.99	≤ ±4%		
92%	20%	211.77	29.32	2578.1	5649.1	43.6%	3.48	≤ ±4%		
91%	20%	209.47	29.62	2577.1	5644.5	43.6%	3.44	≤ ±4%		
90%	20%	207.17	29.91	2575.1	5635.4	43.6%	3.36	≤ ±4%		

			F	Page 124 of 2	243		Report No.:	6134610.50
			OV	E-Richtlinie F	R 25			
Clause	Requiremen	ıt - Test				Result - Rem	ark	Verdict
5.3.10.1.1 (5.3.4.2 & 5.3.6)				s (reactive p lure for stat		rol Q (U) and ur	d active	Р
Model	Hybridpowe	er 12kW 3ph						
Test cond	lition		Measu	ırement		Target	Deviation	Limit
U/U _n	P/P _n	U (V)	I (A)	P (W)	Q (Var)	Q/S _n	ΔQ/S _n (%)	$\Delta Q/S_n$
89%	20%	204.87	30.19	2573.8	5623.6	43.6%	3.26	≤ ±4%
88%	20%	202.56	30.48	2572.5	5612.8	43.6%	3.17	≤ ±4%
87%	20%	200.27	30.78	2569.1	5602.7	43.6%	3.09	≤ ±4%
86%	20%	197.97	31.08	2569.3	5591.5	43.6%	3.00	≤ ±4%
85%	20%	195.68	31.40	2569.7	5580.9	43.6%	2.91	≤ ±4%
86%	20%	197.97	31.13	2570.5	5601.0	43.6%	3.08	≤ ±4%
87%	20%	200.26	30.82	2571.1	5611.1	43.6%	3.16	≤ ±4%
88%	20%	202.56	30.53	2573.4	5622.4	43.6%	3.25	≤ ±4%
89%	20%	204.86	30.22	2574.4	5629.6	43.6%	3.31	≤ ±4%
90%	20%	207.16	29.93	2575.5	5639.5	43.6%	3.40	≤ ±4%
91%	20%	209.47	29.65	2576.7	5652.0	43.6%	3.50	≤ ±4%
92%	20%	211.76	29.15	2578.4	5608.5	43.6%	3.14	≤ ±4%
93%	20%	214.06	22.89	2599.6	4153.9	32.7%	1.92	≤ ±4%
94%	20%	216.36	17.40	2620.0	2703.2	21.8%	0.73	≤ ±4%
95%	20%	218.65	13.38	2630.6	1277.5	10.9%	-0.25	≤ ±4%
96%	20%	220.95	11.95	2631.0	218.0	0	1.82	≤ ±4%
97%	20%	223.25	11.83	2632.2	213.2	0	1.78	≤ ±4%
98%	20%	225.54	11.69	2629.4	208.90	0	1.74	≤ ±4%
99%	20%	227.84	11.58	2630.4	205.1	0	1.71	≤ ±4%
100%	20%	230.14	11.46	2630.8	199.5	0	1.66	≤ ±4%

The followi	The following measurements o) to z) only for EZE with a minimum active power < 20% P _n :											
Test co	ondition		l	Target	Deviation							
U/U _n	P/P _n	U (V)	I (A)	P (W)	Q (Var)	cos φ _{E30}	Q/S _n	ΔQ/S _n (%)				
91%	P _{min} =5%	209.45	6.94	577.8	1334.4	0.397	11.50%	-0.38				
91%	10%	209.45	13.83	1149.9	2658.3	0.397	22.90%	-0.75				
91%	15%	209.47	21.08	1745.1	4056.5	0.395	34.40%	-0.60				
91%	20%	209.48	26.23	2231.8	5020.9	0.406	43.60%	-1.76				
91%	15%	209.47	21.07	1742	4056	0.395	34.40%	-0.60				
91%	10%	209.45	13.83	1151.5	2658.2	0.397	22.90%	-0.75				
91%	P _{min} =5%	209.45	6.96	581.5	1336.4	0.399	11.50%	-0.36				
109%	P _{min} =5%	250.86	5.35	584.7	-1337.3	-0.401	-11.50%	0.36				

		<u>'</u>	
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

The following measurements o) to z) only for EZE with a minimum active power < 20% P _n :								
Test co	ondition			Measuremen	t		Target	Deviation
U/U _n	P/P _n	U (V)	I (A)	P (W)	Q (Var)	cos φ _{E30}	Q/S _n	ΔQ/S _n (%)
109%	10%	250.85	11.93	1155.5	-2659.6	-0.398	-21.80%	-0.36
109%	15%	250.86	18.24	1756	-4025.6	-0.400	-34.40%	0.85
109%	20%	250.86	23.18	2207.6	-5079.2	-0.399	-43.60%	1.27
109%	15%	250.86	18.24	1738.3	-4032.1	-0.396	-34.40%	0.80
109%	10%	250.86	11.78	1143.7	-2622.5	-0.400	-22.90%	1.05
109%	P _{min} =5%	250.86	5.39	582.1	-1320.6	-0.403	-11.50%	0.49
ΔP / P _n Limit					10%			

Note:

The setting value of a time constant Tau of 3 s for Q(U) control and Tau of 5 s for P(U) control when performed this test.

The examination of inpatient behaviour is passed if:

- the 30 s mean values of the reactive power values measured in stationary operation measured according to 5.3.10.1.1 are within the tolerance band of \pm 4% S_n and \pm 1% U_n of the set Q (U) characteristic.
- in the power range P_{min} to 20% P_n the time course of the reactive power is steady and at P=0 the reactive power approaches 0. Compliance with the tolerance band of \pm 4% S_n is not required in this active power range.

To check the behavior of the Q (U) control, the time constant or the response time of the Q (U) control must be defined according to a first-order filter (PT1 element) with a time constant Tau of 3 s (deviating from the standard setup). Overvoltage protection U_{eff}> may be deactivated when testing the voltage-dependent control functions.

Table 3 - Setting values for the Q (U) characteristic according to the TOR generator

Point according to TOR generator, Figure 13	Voltage (<i>U/U</i> _n)	Reactive power (Q/S _n)
a	0.92	43.6 % (overexcited)
b	0.96	0
С	1.05	0
d	1.08	43.6 % (underexcited)

Figure 8 - Q (U) characteristic

Page 126 of 243 Report No.: 6134610.				134610.50
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

Page 127 of 243 Report No.: 6134610			134610.50	
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

		- 3	-1	
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

5.3.10 (5.3.4. 5.3.6)		TABLE: Voltage-control functions (reactive power control Q (U) a power control P (U)) -Test procedure for dynamic behaviour					and active	Р
Mode	el	Hybridpower 1	2kW 3ph					•
Test o	condit	tion	Measuremer	nt			Dynamic behaviou	
U/U _n		P/P _n	U (V)	I (A)	P (W)	Q (Var)	Р	Q
1. 1	100%	100%	230.15	16.94	11679.62	103.69	Р	Р
2. 1	104%	100%	239.34	16.30	11687.54	139.77	Р	Р
3. 1	109%	100%	250.73	16.99	11640.08	-5232.36	Р	Р
4. 1	113%	100%	259.98	0.937	-51.08	-283.93	Р	Р
5. 1	109%	100%	250.73	16.97	11621.95	-5229.05	Р	Р
6. 1	109%	P _{min}	250.77	1.24	233.83	-642.49	Р	Р
7. 1	109%	100%	250.73	16.95	11606.13	-5234.73	Р	Р
8. 1	100%	100%	230.13	16.91	11661.86	100.77	Р	Р
9. 9	91%	100%	209.58	20.38	11595.50	5424.35	Р	Р
10. 8	35%	100%	195.81	20.32	10638.85	5381.67	Р	Р
11. 8	35%	P _{min}	195.63	0.773	69.98	211.93	Р	Р
12. 8	35%	100%	195.80	20.32	10639.54	5382.75	Р	Р
13. 9	91%	100%	209.59	20.41	11610.33	5421.09	Р	Р
14. 9	97%	100%	223.26	17.43	11660.54	84.41	Р	Р
15. 1	100%	100%	230.15	16.92	11666.31	104.48	Р	Р

Note:

The setting value of a time constant Tau of 3 s for Q(U) control and Tau of 5 s for P(U) control when performed this test.

The dynamic behaviour test is passed if

- the time curve of the reactive power during the measurement according to 5.3.10.1.2 for powers greater than 20% P_n is within the tolerance bands that result from the behaviour of an equivalent PT1 element (1st order filter). Permissible tolerances for the reactive power values are \pm 4% S_n and for the time + 1 second. The tolerance bands are calculated according to Table 6.
- There are no discontinuities in the characteristic curve, no persistent vibrations (after the end of the transient process after 5 Tau) of the reactive power and no disconnections of the EZE occur;
- At the transition to active powers <20% P_n there are no sudden changes in reactive power. With changes in active power between 0% and 20% P_n , the reactive power must behave continuously.

Page 129 of 243 Report No.: 6134610.50

	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

	Page 130 of 243 Report No.: 6134610.50				
	OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict	

Page 131 of 243 Report No.: 6134610.50

		OVE-Richtlinie R 25	<u> </u>	
Clause	Requirement - Test		Result - Remark	Verdict

Page 132 of 243 Report No.: 6134610.50

		OVE-Richtlinie R 25	<u> </u>	
Clause	Requirement - Test		Result - Remark	Verdict

Page 133 of 243 Report No.: 6134610.50				
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Page 134 of 243 Report No.: 6134610.5			134610.50	
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

Page 135 of 243

	OVE-Richtlinie R 25	·	
Clause	Requirement - Test	Result - Remark	Verdict

Page 136 of 243 Report No.: 6134610.5			134610.50	
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

	Page 137 of 243 Report No.: 6134610.5			134610.50
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

	Page 138 of 243 Report No.: 6134610.50				
	OVE-Richtlinie R 25				
Clause	Clause Requirement - Test Result - Remark Verdict				

Page 139 of 243

OVE-Richtlinie R 25			
Clause	Requirement - Test	Result - Remark	Verdict

	Page 140 of 243 Report No.: 6134610.		134610.50	
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

	. ago o	rtoport rton o	
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

5.3.11 (6.2.3)	I ARI E: Drotoction at the cottings as requireted by the ICID generator	
Model	Model Hybridpower 12kW 3ph	
The corresponding parameters or settings cannot be changed by the user or by means of aids accessible by the user.		Р
The parameters or settings are not changed by software updates.		Р
Protection type: Password used.		Р

Note:

The test is passed if the corresponding parameters or settings cannot be changed by the user or by means of aids accessible by the user.

This can be achieved, for example, by using suitable password protection. The password must not be accessible to the user.

The test is passed if the parameters or settings are not changed by software updates.

Parameters List print export from PC software tool about SW Version: V1.04

OVE-Richtlinie R 25 Clause Requirement - Test Result - Remark Verdict

Report No.: 6134610.50 OVE-Richtlinie R 25 Requirement - Test Clause Result - Remark Verdict

Page 146 of 243 Report No.: 6134610.50

OVE-Richtlinie R 25 Clause Requirement - Test Result - Remark Verdict

Page 147 of 243 Report No.: 6134610.50

	OVE-Richtlinie R 25	·	
Clause	Requirement - Test	Result - Remark	Verdict

Note:

The selection of Austria parameters and country setting can only be completed in the factory or authorised person by password, the user cannot change the country setting.

Report No.: 6134610.50

		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

5.4.1.1.1 (6.1.2 & 6.3.3.1)	TABLE: Voltage protection devices										
Model	Hybridpower 12	kW 3ph									
Test condition:	Output level: 5 Frequency: 50		rated current o	utput							
Phase	Thresholds Limit [V]	Internal setting of thresholds [V]	Measured trip value [V]	Internal setting of disconnection time [s]	Measured disconnection time [s]	Trip Time Limit [s]					
	0.8 U _n (U _{eff} <) 184 18		184.8		1.411						
		1 12/1	184.2	1.5 s	1.423	1.4 - 1.6					
			184.3		1.426						
								57.0		0.516	
L1		57.3	0.5 s	0.514	0.4 - 0.6						
	(Oeil <<)		57.2		0.518						
			264.4	0.1 s	0.095						
		1.15 U _n (U _{eff} >>) 264.5	264.5		0.093	≤ 0.2					
	(30177)		264.4		0.086						

Note:

The test of overvoltage protection $U_{\text{eff}} >>$ and undervoltage protection $U_{\text{eff}} <<$ is considered passed if the determined voltages that lead to a shutdown are within a tolerance band of \pm 1% U_{n} around the setting values and if the determined tripping delay is within \pm 100 ms of the set trigger delay.

The LVRT function is switch on when the voltage protection test is performed.

Report No.: 6134610.50 OVE-Richtlinie R 25 Clause Requirement - Test Result - Remark Verdict

Report No.: 6134610.50

OVE-Richtlinie R 25 Clause Requirement - Test Result - Remark Verdict			1 ago 100 01 2 10	rtoport rton o	
Clause Requirement - Test Result - Remark Verdict			OVE-Richtlinie R 25		
	Clause	Requirement - Test		Result - Remark	Verdict

5.4.1.1.1 (6.1.2 & 6.3.3.1)	TABLE: Voltag	ABLE: Voltage protection devices								
Model	Hybridpower 12	lybridpower 12kW 3ph								
Test condition:	Output level: 5 Frequency: 50		rated current o	output						
Phase	Thresholds Limit [V]	Internal setting of thresholds [V]	Measured trip value [V]	Internal setting of disconnection time [s]	Measured disconnection time [s]	Trip Time Limit [s]				
	0.8 U _n (U _{eff} <)		184.1		1.417					
		184	184.3	1.5 s	1.408	1.4 - 1.6				
		(Con 4)		184.1		1.429				
	0.25 U _n (U _{eff} <<)				57.5		0.517			
L2			57.5	57.3	0.5 s	0.516	0.4 - 0.6			
	(Oeil (1)		57.3	0.510						
			263.9		0.086					
	1.15 U _n (U _{eff} >>)	1.15 U _n 264.5	263.6	0.1 s	0.092	≤ 0.2				
	(2011 27)		264.0		0.088	1				

Note:

The test of overvoltage protection $U_{\text{eff}} >>$ and undervoltage protection $U_{\text{eff}} <$ and $U_{\text{eff}} <<$ is considered passed if the determined voltages that lead to a shutdown are within a tolerance band of \pm 1% U_{n} around the setting values and if the determined tripping delay is within \pm 100 ms of the set trigger delay.

The LVRT function is switch on when the voltage protection test is performed.

Report No.: 6134610.50 OVE-Richtlinie R 25 Clause Requirement - Test Result - Remark Verdict

Report No.: 6134610.50

		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

5.4.1.1.1 (6.1.2 & 6.3.3.1)	TABLE: Voltag	ABLE: Voltage protection devices									
Model	Hybridpower 12	oridpower 12kW 3ph									
Test condition:	Output level: 5 Frequency: 50		rated current c	utput							
Phase	Thresholds Limit [V]	Internal setting of thresholds [V]	Measured trip value [V]	Internal setting of disconnection time [s]	Measured disconnection time [s]	Trip Time Limit [s]					
	0.8 U _n (U _{eff} <)		184.3		1.423						
		1 18/1	184.1	1.5 s	1.426	1.4 - 1.6					
			184.3		1.435						
	0.25 Un	0.25 U _n (U _{eff} <<) 57.5		56.3		0.509					
L3			55.9	0.5 s	0.519	0.4 - 0.6					
	(Oeil 11)		55.8		0.512						
				264.9		0.082					
		1.15 U _n (U _{eff} >>) 264.5 264.9 265.0	264.9	0.1 s	0.086	≤ 0.2					
	(Ueff >>)		265.0		0.074						

Note:

The test of overvoltage protection $U_{\text{eff}} >>$ and undervoltage protection $U_{\text{eff}} <<$ is considered passed if the determined voltages that lead to a shutdown are within a tolerance band of \pm 1% U_{n} around the setting values and if the determined tripping delay is within \pm 100 ms of the set trigger delay.

The LVRT function is switch on when the voltage protection test is performed.

		TABLE: Testing the overvoltage protection U _{eff} > with monitoring of the moving 10-minute average Hybridpower 12kW 3ph ion: Disconnection time (s): Limit: voltage is set to 100% U _n and held for 600 s. Thereafter the voltage is set to 113% U _n . connection must take place within 600 s. ise 1 469.0 ise 2 463.8 ise 3 476.1 voltage is set to U _n for 600 s and then to 109% U _n for 600 s. No disconnection should take ise 1 No disconnection ise 2 No disconnection ise 3 No disconnection voltage is set to 107% U _n and held for 600 s. Thereafter the voltage is set to 115% U _n . connection must take place within 300 s or about 50% of the disconnection time measured in a). The disconnection time should about 50% of the value measured the connection time 50% of the value measured the connection time 50% of the value measured the connection 50% of the value measured the connection time 50% of the value me		134610.50		
			OVE-Richtlinie R 25			
Claus	se	Requirement	- Test	Result - Remark	Verdict	
5.4.1 (6.1.2 6.3.3	2 &			monitoring of the moving	Р	
Mode	el	Hybridpower	12kW 3ph			
Test	condi	tion:	Disconnection time (s):	Limit:		
				e voltage is set to 113% U _n .		
a)	Pha	se 1	469.0			
_	Pha	se 2	463.8	≤ 600 s		
	Pha	se 3	476.1			
	The	voltage is set	to U _n for 600 s and then to 109% U _n for 600 s	s. No disconnection should ta	ake place.	
b)	Pha	se 1	No disconnection			
D)	Pha	se 2	No disconnection	Disconnection should not ta	ke place.	
	Pha	se 3	No disconnection			
The voltage is set to 107% U _n and held for 600 s. Thereafter the voltage is set to 115% U _n . Disconnection must take place within 300 s or about 50% of the disconnection time measured point a).*						
c)	Pha	se 1	276.0	The disconnection time sh	should be	
	Pha	se 2	283.1	about 50% of the value mea		
	Pha	se 3	292.5	a).		
Note:						

The switch-off time for test c) can vary due to limit deviations in the voltage measurement accuracy. A switch-off time between 225 s and 375 s after the voltage jump at time t is within the permitted limit deviation (\pm 1% U_n) (see OVE-guideline R 25 Figure 22, measurement c).

TRF No. TOR Erzeuger_V1.1

		1 age 155 of 245	Report No 0	134010.30
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Page 156 of 243 Report No.: 6134610.50

OVE-Richtlinie R 25								
Clause	Requirement - 7	Test		Resi	ult - Remark		Verdict	
5.4.2 (6.1.2 & 6.3.3.1)	2 & TABLE: Frequency protection devices							
Model	Hybridpower 12	2kW 3ph						
Setting trip value [Hz] Frequency step		Test voltage [V]	Measured trip value [Hz]	Internal setting of disconnection time [s]	Measured disconnection time [ms]		p Time nit [ms]	
		0.85 U _n	47.5		173			
47.50	48.0 Hz to 47.0 Hz	Un	47.5	100	163	:	≤200	
47.0112		1.10 U _n	47.5		179			
		0.85 U _n	51.5		161			
51.50	51.0 Hz to 52.0 Hz	Un	51.5	100	170	:	≤200	
	JZ.U ∏Z	1.10 U _n	51.5		159			

Note:

The tripping frequencies and the tripping times of the frequency monitoring are determined by reducing or increasing the mains frequency with a rate of change of 1 Hz/s up to the setting values defined in accordance with TOR generator, Section 6.3.3.1.

The trip value was determined manually by reducing the frequency in 10mHz steps. When the trip value is known (e.g. 47.5 Hz), the ac-source is programmed to run from e.g. 48.0Hz to 47.0Hz with 1Hz / s. The disconnection time is calculated by the measured time minus the 500ms from 48.0Hz to 47.5Hz.

Page 159 of 243 Report No.: 6134					
Clause	Requirement - Test		Result - Remark	Verdict	

Page 160 of 243 Report No.: 6134610.50

					OVE-Richt	linie R 25			<u> </u>		
Claus	e	Require	ement - Test				Res	ult - Rema	ark		Verdict
5.4.3 TABLE: Detection of island operation In accordance with EN 62116 - test condition A (EUT output = 100%)									Р		
Mode	el	Hybridp	oower 12kW 3	3ph							
Disco	onnec	tion limi	t:			2	s				
No	(% (EUT ^{a)} of EUT ting)	Reactive load (% of Q_L in 6.1.d) 1)	P _{ac} b) (% of nominal)	Q _{ac} c) (% of nominal)	Run on Time (ms)	P _{EUT} (W)	Actual Q _f	V _{DC}	Re	marks ^{d)}
1	1	100	100	0	0	159	12	0.98	650	Tes	t A at BL
2	1	100	100	0	- 5	83	12	1.01	650	Tes	t A at IB
3	1	100	100	0	+ 5	127	12	1.04	650	Tes	t A at IB
4	1	100	100	- 5	- 5	64	12	1.04	650	Tes	t A at IB
5	1	100	100	- 5	0	68	12	0.97	650	Tes	t A at IB
6	1	100	100	- 5	+ 5	76	12	1.00	650	Tes	t A at IB
7	1	100	100	+ 5	- 5	93.6	12	0.99	650	Tes	t A at IB
8	1	100	100	+ 5	0	46.4	12	0.97	650	Tes	t A at IB
9	1	100	100	+ 5	+ 5	88	12	0.98	650	Tes	t A at IB
10	1	100	100	- 5	- 10	79.6	12	1.00	650	Tes	t A at IB
11	1	100	100	- 5	+ 10	112.8	12	1.03	650	Tes	t A at IB
12	1	100	100	0	- 10	75	12	1.03	650	Tes	t A at IB
13	1	100	100	0	+ 10	142	12	0.97	650	Tes	t A at IB
14	1	100	100	+ 5	- 10	87	12	1.03	650	Tes	t A at IB
15	1	100	100	+ 5	+ 10	137	12	0.98	650	Tes	t A at IB
16	1	100	100	- 10	- 10	77.8	12	0.98	650	Tes	t A at IB
17	1	100	100	- 10	- 5	65.8	12	0.95	650	Tes	t A at IB
18	1	100	100	- 10	0	108.2	12	0.97	650	Tes	t A at IB
19	1	100	100	- 10	+ 5	78.6	12	0.99	650	Tes	t A at IB
20	1	100	100	- 10	+10	70.2	12	1.02	650	Tes	t A at IB
21	1	100	100	+ 10	- 10	136.2	12	1.02	650	Tes	t A at IB
22	1	100	100	+ 10	- 5	79.8	12	0.99	650	Tes	t A at IB
23	1	100	100	+ 10	0	44	12	0.96	650	Tes	t A at IB
24	1	100	100	+ 10	+ 5	134	12	0.99	650	Tes	t A at IB
25	1	100	100	+ 10	+ 10	50	12	1.02	650	Tes	t A at IB

Page 161 of 243 Report No.: 6134									134610.50
			0	VE-Richtlini	e R 25				
Clause	Requiren	nent - Test				Result -	Remark		Verdict
5.4.3		Detection of dance with E	•		on B (EUT	output = \$	50 % – 66	%)	Р
Model	Hybridpo	ower 12kW 3p	oh						
Discor	nection limit:				2 s				
No	P _{EUT} ^{a)} (% of EUT rating)	Reactive load (% of Q _L in 6.1.d) 1)	P _{ac} b) (% of nominal)	Q _{ac} ^{c)} (% of nominal)	Run on Time (ms)	P _{EUT} (W)	Actual Q _f	V _{DC}	Remar ks ^{d)}
1	66	66	0	- 5	74	7.92	1.01	450V	Test B at IB
2	66	66	0	- 4	116	7.92	0.97	450V	Test B at IB
3	66	66	0	- 3	119	7.92	0.99	450V	Test B at IB
4	66	66	0	- 2	130	7.92	0.98	450V	Test B at IB
5	66	66	0	- 1	147	7.92	1.02	450V	Test B at IB
6	66	66	0	0	176	7.92	1.01	450V	Test B at BL
7	66	66	0	+ 1	175	7.92	1.03	450V	Test B at IB
8	66	66	0	+ 2	138	7.92	1.02	450V	Test B at IB
9	66	66	0	+ 3	123	7.92	1.05	450V	Test B at IB
10	66	66	0	+ 4	117	7.92	1.00	450V	Test B at IB
11	66	66	0	+ 5	89	7.92	1.02	450V	Test B at IB

		Page 162 of 243	Report No.: 6	134610.50
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

5.4.3	TABLE: Detection of island operation In accordance with EN 62116 - test condition C (EUT output = 25 %-33 %)	Р
Model	Hybridpower 12kW 3ph	

Disconnection limit:

2 s

	J 10 0 ti 0 1 1 11 11				_	. •			
No	P _{EUT} ^{a)} (% of EUT rating)	Reactive load (% of Q _L in 6.1.d) 1)	P _{ac} b) (% of nominal)	Q _{ac} ^{c)} (% of nominal)	Run on Time (ms)	P _{EUT} (W)	Actual Q _f	V _{DC}	Remarks ^{d)}
1	33	33	0	- 5	47	3.96	1.02	200V	Test C at IB
2	33	33	0	- 4	59	3.96	0.99	200V	Test C at IB
3	33	33	0	- 3	67	3.96	0.96	200V	Test C at IB
4	33	33	0	- 2	71	3.96	1.00	200V	Test C at IB
5	33	33	0	- 1	71	3.96	0.96	200V	Test C at IB
6	33	33	0	0	142	3.96	1.00	200V	Test C at BL
7	33	33	0	+ 1	97	3.96	0.96	200V	Test C at IB
8	33	33	0	+ 2	49	3.96	0.97	200V	Test C at IB
9	33	33	0	+ 3	47	3.96	0.98	200V	Test C at IB
10	33	33	0	+ 4	45	3.96	0.99	200V	Test C at IB
11	33	33	0	+ 5	43	3.96	1.00	200V	Test C at IB

Note:

a) P_{EUT} : EUT output power

b) P_{ac} : Active power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

c) Qac: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

d) BL: Balance condition, IB: Imbalance condition.

	Page 163 of 243 Report No.: 6134610.5						
		OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict			

	Page 164 of 243 Report No.: 6134610.5						
		OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict			

	: age : 30 0: = :0	. top c. t . to c	
	OVE-Richtlinie R 25		
Clause	Requirement - Test	Result - Remark	Verdict

2)	TABLE: Te	esting the connec	ction conditions and synchroniz	synchronization			
el	Hybridpow	er 12kW 3ph					
		Setting Treconnection	n [s]:	300			
		Setting f < for cor	nnected to grid [Hz]:	47.5			
ng val	ues:	Setting f > for cor	nnected to grid [Hz]:	50.1			
		Setting V < for co	onnected to grid [V]:	195.5			
		Setting V > for co	onnected to grid [V]:	250.7			
autor	matic reconn	ection after tripping	g				
	Test c	ondition	Reconnection time [s]:	Limit [s]:			
ectin	g conditions	for frequencies:					
	<47.	45 Hz	No connection	No resetting allow	wed		
Swi	tch to:						
	≥47.	55 Hz	325	≥ 300 s			
Pov	er gradient	after connection	9.9%	≤10% P _{max} per minute			
	> 50.	15 Hz	No connection	No resetting allowed			
Swi	tch to:						
	≤50.	05 Hz	322	≥ 300 s			
Pov	er gradient	after connection	9.9%	≤ 10% P _{max} per m	inute		
ectin	g conditions	for voltages:					
	< 8	34%	No connection	No resetting allow	wed		
Swi	tch to:						
	≥8	6%	324	≥ 300 s			
Pov	er gradient	after connection	9.9%	≤ 10% P _{max} per m	inute		
	>11	10 %	No connection	No resetting allow	wed		
Swi	tch to:			•			
	≤10	09%	324	≥ 300 s			
Pov	er gradient	after connection	9.9%	≤ 10% P _{max} per m	inute		
	autor secting Switt Pow secting Switt Pow Switt	automatic reconn Test conecting conditions <47. Switch to: 247. Power gradient and secting conditions <50. Power gradient and secting conditions <8 Switch to: 28 Power gradient and secting conditions <8 Switch to: 28 Switch to: 28 Switch to: 28 Switch to: 28 Switch to: 29 Switch to: 210	Bell Hybridpower 12kW 3ph Setting Treconnection Setting f < for con Setting V < for con Setting V > for con Setting condition Test condition	Hybridpower 12kW 3ph Setting Treconnection [s]: Setting f < for connected to grid [Hz]: Setting f > for connected to grid [V]: Setting V < for connected to grid [V]: Setting V > for connected to grid [V]: Setting V > for connected to grid [V]: Setting Condition Reconnection time [s]: Reconnection time [s]: Reconnection time [s]: Reconnection time [s]: Reconnection Switch to: Setting V > for connection Reconnection Reconnection Reconnection Reconnection Reconnection Setting Connection Setting Connection Reconnection Reconne	Hybridpower 12kW 3ph Setting Treconnection [s]: 300 Setting f < for connected to grid [Hz]: 47.5 50.1 Setting V < for connected to grid [Hz]: 50.1 195.5 Setting V > for connected to grid [V]: 250.7 automatic reconnection after tripping Test condition Reconnection time [s]: Limit [s]:		

Note:

Power gradient after reconnection must $\leq 10\%P_{max}$ per minute.

The test is passed if the EZE or the automatic activation point can only be activated within the tolerance bands according to the TOR generator, Section 5.5.2 and after the voltage and frequency have remained within the tolerance bands after 300 s at the earliest.

Page 166 of 243 Report No.: 6134610					
		OVE-Richtlinie R 25			
Clause	Requirement - Test		Result - Remark	Verdict	

5.6 (5.2)	TABL	E: Pro	of of dynamic netwo	ork support				Р	
Model	Hybri	Hybridpower 12kW 3ph							
Test number	U/U _n [p.u.] / [ms]	Fault type	Output power level P set point [%Pn]	Average remaining voltage [pos.]	Measured fault duration [ms]	current after	Percent of current after fault 100 ms [%l _r]	Duration of restoring network [ms]	
1.0A			P = 0	34.85	251	N/A	N/A	N/A	
1.1		Α	P = Pn ± 2% Pn	36.84	161	0.008	0.008	516	
1.2	0.15 /		P = 0.2 Pn to 0.6 Pn	34.77	253	0.124	0.124	808	
1.0D1	160		P = 0	143.7	263	N/A	N/A	N/A	
1.3		D1	P = Pn ± 2% Pn	141.6	262	0.431	0.427	821	
1.4			P = 0.2 Pn to 0.6 Pn	141.7	255	0.504	0.430	835	
2.0A			P = 0	114.8	1014	N/A	N/A	N/A	
2.1		Α	P = Pn ± 2% Pn	116.9	1011	0.350	0.354	884	
2.2	0.50 /		P = 0.2 Pn to 0.6 Pn	114.3	1002	0.343	0.351	676	
2.0D1	860		P = 0	174.4	989	N/A	N/A	N/A	
2.3		D1	P = Pn ± 2% Pn	174.7	1002	0.531	0.527	706	
2.4			P = 0.2 Pn to 0.6 Pn	173.2	1009	0.527	0.529	790	
3.0A			P = 0	197.4	61000	N/A	N/A	N/A	
3.1		Α	P = Pn ± 2% Pn	198.9	60960	113.25	113.21	N/A	
3.2	0.85 /		P = 0.2 Pn to 0.6 Pn	198.0	61020	45.54	45.52	N/A	
3.0D1	60000		P = 0	213.3	61000	N/A	N/A	N/A	
3.3		D1	P = Pn ± 2% Pn	214.7	61080	106.25	106.30	N/A	
3.4			P = 0.2 Pn to 0.6 Pn	213.5	61020	42.80	42.64	N/A	

		Page 167 of 243	Report No.: 6	134610.50
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				1.1
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	15:13:58
	3	Fault type (phase)				3-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.15
General information	5	Setting dip duration	160		ms	161
loao	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	161
	8	Fault duration in empty load test	Total		ms	162
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.836
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.836
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	0.996
	12	Current	Pos.	t ₁ -500ms to t ₁ -100ms	p.u.	0
	13	A adding to the second	Total	4 405 45 4	p.u.	0.985
Before the dip < t ₁	14	Active power	Pos.	t ₁ -10s to t ₁		0.985
	15	Desetive resum	Total	4 100 to 4	p.u.	0.061
	16	Reactive power	Pos.	t ₁ -10s to t ₁		0.061
	17	Cosφ		t ₁ -10s to t ₁		0.998
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.159
	19		Phase 1			0.014
	20	Line current	Phase 2	<i>t</i> ₁ +60ms	p.u.	0.013
	21		Phase 3			0.013
During the dip t ₁ to t ₂	22		Phase 1			0.014
1100	23	Line current	Phase 2	<i>t</i> ₁ +100ms	p.u.	0.013
	24		Phase 3			0.013
	25	A otivo novor	Total	4 . 100ma to 4 . 20ma		0
	26	- Active power	Pos.	t ₁ +100ms to t ₂ -20ms	p.u.	0
	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	0.997
	28	A otivo povor	Total	4 + 20 to 4 + 100		0.986
	29	Active power	Pos.	£+3s to £+10s	p.u.	0.986
After the dip	30	Active power rising time	Pos.		S	0.516
> t ₂	31	Popotive name	Total	t 120 to 1 1400	n	0.061
	32	Reactive power	Pos.	£+3s to £+10s	p.u.	0.061
	33	Reactive power rising time	Pos.		S	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 168 of 243 Report No.: 6134610.5						
	OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict		

Page 173 of 243 Report No.: 6134610.5					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				1.2
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:07:30
	3	Fault type (phase)				3-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.15
General information	5	Setting dip duration	160		ms	162
	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	162
	8	Fault duration in empty load test	Total		ms	162
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and	211	0.840
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.836
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.001
	12	Current	Pos.	<i>t</i> ₁ -500ms to <i>t</i> ₁ -100ms	p.u.	0
	13	Active power	Total	t ₁ -10s to t ₁		0.216
Before the dip < t ₁	14	Active power	Pos.	11-105 to 11	p.u.	0.216
	15	Reactive power	Total	t ₁ -10s to t ₁	p.u.	0.053
	16		Pos.			0.053
	17	Cosφ		t ₁ -10s to t ₁		0.970
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.160
	19	Line current	Phase 1	<i>t</i> ₁ +60ms	p.u.	0.015
	20		Phase 2			0.014
	21	Phase				0.013
During the dip t ₁ to t ₂	22		Phase 1	<i>t</i> ₁+100ms	p.u.	0.015
	23	Line current	Phase 2			0.014
	24		Phase 3			0.013
	25	Active power	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0
	26	Active power	Pos.			
	27	Voltage	Line to neutral	t₂+3s to t₂+10s	p.u.	1.001
	28	Active nower	Total	t₂+3s to t₂+10s	p.u.	0.214
	29	Active power	Pos.	2+33 10 2+103		0.214
After the dip	30	Active power rising time	Pos.		s	0.255
> t ₂	31	Reactive power	Total	5±3e to 5±10e	p.u.	0.054
	32	iveactive power	Pos. ½+3s to ½+10s		p.u.	0.054
	33	Reactive power rising time	Pos.		s	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 178 of 243 Report No.: 6134610.5					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				1.3
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:46:22
	3	Fault type (phase)				2-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.62
General information	5	Setting dip duration	250		ms	161
	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	161
	8	Fault duration in empty load test	Total		ms	162
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and	211	0.371
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.423
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	0.997
	12	Current	Pos.	<i>t</i> ₁ -500ms to <i>t</i> ₁ -100ms	p.u.	0
	13	Active power	Total	t ₁ -10s to t ₁		0.982
Before the dip < t ₁	14	Active power	Pos.	11-105 to 11	p.u.	0.982
	15	Reactive power	Total	t ₁ -10s to t ₁	p.u.	0.060
	16		Pos.			0.059
	17	Cosφ		<i>t</i> ₁ -10s to <i>t</i> ₁		0.998
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.625
	19	Line current	Phase 1	<i>t</i> ₁ +60ms	p.u.	0.015
	20		Phase 2			0.067
	21		Phase 3			0.065
During the dip t ₁ to t ₂	22		Phase 1	<i>t</i> ₁+100ms	p.u.	0.015
	23	Line current	Phase 2			0.067
	24		Phase 3			0.065
	25	Active power	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0
	26	Active power	Pos.			0
	27	Voltage	Line to neutral	t₂+3s to t₂+10s	p.u.	0.996
	28	Active power	Total	£+3s to £+10s	D.II	0.982
	29	Active power	Pos.	2103 10 21 103	p.u.	0.982
After the dip	30	Active power rising time	Pos.		s	0.317
> t ₂	31	Reactive power	Total	t₂+3s to t₂+10s	p.u.	0.060
	32	iteactive power	Pos.	2703 to 27103	p.u.	0.059
	33	Reactive power rising time	Pos.		S	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 179 of 243 Report No.: 6134610.						
	OVE-Richtlinie R 25					
Clause	Requirement - Test	Result -	Remark	Verdict		

Page 181 of 243

	Page 184 of 243 Report No.: 6134610			
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				1.4
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:39:10
	3	Fault type (phase)				2-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.62
General information	5	Setting dip duration	160		ms	161
	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	161
	8	Fault duration in empty load test	Total		ms	162
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.630
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.000
	12	Current	Pos.	t ₁ -500ms to t ₁ -100ms	p.u.	
	13	A otivo povor	Total	4 100 to 4		0.209
Before the dip < t ₁	14	Active power	Pos.	t ₁ -10s to t ₁	p.u.	0.209
	15	Departing names	Total	t ₁ -10s to t ₁	n II	0.053
	16	Reactive power	Pos.	<i>t</i> 1-108 to <i>t</i> 1	p.u.	0.006
	17	Cosφ		t ₁ -10s to t ₁		0.969
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.630
	19		Phase 1	<i>t</i> ₁ +60ms	p.u.	0.015
	20	Line current	Phase 2			0.068
	21		Phase 3			0.067
During the dip t ₁ to t ₂	22		Phase 1			0.015
	23	Line current	Phase 2	<i>t</i> ₁ +100ms	p.u.	0.068
	24		Phase 3			0.067
	25	Active power	Total	t₁+100ms to t₂-20ms	D.I.	0
	26	Active power	Pos.	4+1001115 to 12-201115	p.u.	0
	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	1.001
	28	Active power	Total	t ₂ +3s to t ₂ +10s	n.,	0.205
	29	Active power	Pos.	2+35 to 2+105	p.u.	0.205
After the dip	30	Active power rising time	Pos.		s	0.106
> t ₂	31	Peactive nower	Total	5+3c to 5+10c	n.u	0.053
	32	Reactive power	Pos.	£+3s to £+10s	p.u.	0.006
	33	Reactive power rising time	Pos.		S	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Report No.: 6134610.50

	Page 189 of 243 Report No.: 613461			
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				2.1
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	15:24:45
	3	Fault type (phase)				3-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.5
General information	5	Setting dip duration	860		ms	861
om	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	861
	8	Fault duration in empty load test	Total		ms	862
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.498
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.496
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.00
	12	Current	Pos.	t ₁ -500ms to t ₁ -100ms	p.u.	
	13	A -4i	Total	4 405 45 4	p.u.	0.986
Before the dip < t ₁	14	Active power	Pos.	t ₁ -10s to t ₁		0.986
131	15	Desetive resum	Total	t. 10s to t.	p.u.	0.061
	16	Reactive power	Pos.	t ₁ -10s to t ₁		0.011
	17	Cosφ		t ₁ -10s to t ₁		0.998
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0491
	19		Phase 1	<i>t</i> ₁ +60ms		0.043
	20	Line current	Phase 2		p.u.	0.040
	21		Phase 3			0.040
During the dip t ₁ to t ₂	22		Phase 1			0.043
1110	23	Line current	Phase 2	<i>t</i> ₁ +100ms	p.u.	0.040
	24		Phase 3			0.040
	25	A otivo novor	Total	4 . 100ma to 4 . 20ma		0
	26	- Active power	Pos.	t ₁ +100ms to t ₂ -20ms	p.u.	0
	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	0.996
	28	A otivo povor	Total	4 + 20 to 4 + 100		0.987
	29	Active power	Pos.	£+3s to £+10s	p.u.	0.987
After the dip	30	Active power rising time	Pos.		S	0.306
> t ₂	31	Ponetive never	Total	t 120 to 1 1400	n	0.061
	32	Reactive power	Pos.	£+3s to £+10s	p.u.	0.007
	33	Reactive power rising time	Pos.		S	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

	Page 190 of 243 Report No.: 6134610.9				
		OVE-Richtlinie R 25			
Clause	Requirement - Test		Result - Remark	Verdict	

Page 192 of 243 Report No.: 6134610.50

#			+					
			·					
§			†					
8								
-								
8			ļ					
8								
=			†					
8]		1					
000		_						
Ä								
9			·					 -
8								
8								
			ļ					-f
8								
7]		1] . (
8								.
8		_	1					
=			†					
8								
7								
	0:04.0	A 0:	06.0 0:	08.0 0:1	10.0 0:1	2.0 0:1	4.0 B	0:16.0
				Α	ı	3		Delta
Time [s]			5.2	258622	0:15.2	83393	0	:10.024771
				205054	0.00			1.637e-4
U1 tRM:	S [p.u.]		0.9	995954	0.99	6118		
 U1_tRM U2_tRM 				995954 996319		6118 6326		6.966e-6
●U2_tRM	S [p.u.]		0.9			6326		
U2_tRMU3_tRM	\$ [p.u.] \$ [p.u.]	l	0.9 0.9	996319	0.99 0.99	6326		6.966e-6
U2_tRM:U3_tRM:U_fund_	\$ [p.u.] \$ [p.u.] _SYM+ [p.u.]		0.9 0.9 0.9	996319 996362	0.99 0.99 0.99	6326 6271		6.966e-6 -9.109e-5
U2_tRM:U3_tRM:U_fund_	S [p.u.] S [p.u.] SYM+ [p.u.] P_SYM+ [p.u		0.9 0.9 0.9	996319 996362 992076	0.99 0.99 0.99	6326 6271 2101		6.966e-6 -9.109e-5 2.495e-5

	Page 195 of 243 Report No.: 6134610				
		OVE-Richtlinie R 25			
Clause	Requirement - Test		Result - Remark	Verdict	

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				2.2
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	15:39:34
	3	Fault type (phase)				3-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.5
General information	5	Setting dip duration	860		ms	865
om	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	865
	8	Fault duration in empty load test	Total		ms	862
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.500
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.498
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.001
	12	Current	Pos.	<i>t</i> ₁ -500ms to <i>t</i> ₁ -100ms	p.u.	0.210
	13	Active newer	Total	t ₁ -10s to t ₁		0.210
Before the dip < t ₁	14	Active power	Pos.	<i>t</i> 1-105 to <i>t</i> 1	p.u.	0.210
	15	Reactive power	Total	<i>t</i> ₁ -10s to <i>t</i> ₁	p.u.	0.053
	16	Reactive power	Pos.	นา-105 เป นา	p.u.	0.007
	17	Cosφ		t ₁ -10s to t ₁		0.970
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.497
	19		Phase 1	<i>t</i> ₁+60ms	p.u.	0.044
	20	Line current	Phase 2			0.041
	21		Phase 3			0.041
During the dip t ₁ to t ₂	22		Phase 1			0.044
	23	Line current	Phase 2	<i>t</i> ₁ +100ms	p.u.	0.041
	24		Phase 3			0.041
	25	Active power	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0
	26	Active power	Pos.	11+1001113 to 12-201113	p.u.	0
	27	Voltage	Line to neutral	t₂+3s to t₂+10s	p.u.	1.00
	28	Active power	Total	<i>t</i> ₂+3s to <i>t</i> ₂+10s	n II	0.40
	29	Active power	Pos.	2+33 10 2+103	p.u.	
After the dip	30	Active power rising time	Pos.		s	0.201
> t ₂	31	Reactive power	Total	t₂+3s to t₂+10s	p.u.	0.03
	32	itodolive power	Pos.	2103 to 27103	p.u.	
	33	Reactive power rising time	Pos.		s	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 197 of 243

Page 199 of 243

Report No.: 6134610.50

-2.826e-5

4.248e-3

0.209996

5.107e-3

0.210024

P_fund_SYM+ [p.u.]

Q_fund_SYM+ [p.u.]

	Page 200 of 243 Report No.: 613461			
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				2.3
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:39:34
	3	Fault type (phase)				3-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.5
General information	5	Setting dip duration	860		ms	867
	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	867
	8	Fault duration in empty load test	Total		ms	868
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.233
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.250
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	0.997
	12	Current	Pos.	<i>t</i> ₁ -500ms to <i>t</i> ₁ -100ms	p.u.	0.990
	13	Active newer	Total	t ₁ -10s to t ₁		0.986
Before the dip < t ₁	14	Active power	Pos.	<i>t</i> 1-105 to <i>t</i> 1	p.u.	0.986
	15	Reactive power	Total	t ₁ -10s to t ₁	p.u.	0.060
	16	Reactive power	Pos.	นา-105 เป นา	p.u.	0.009
	17	Cosφ		t ₁ -10s to t ₁		0.998
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.763
	19		Phase 1	<i>t</i> ₁+60ms	p.u.	0.042
	20	Line current	Phase 2			0.070
	21		Phase 3			0.068
During the dip t ₁ to t ₂	22		Phase 1			0.042
	23	Line current	Phase 2	<i>t</i> ₁ +100ms	p.u.	0.070
	24		Phase 3			0.068
	25	Active power	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0
	26	Active power	Pos.	11+1001113 to 12-201113	p.u.	0
	27	Voltage	Line to neutral	t₂+3s to t₂+10s	p.u.	0.996
	28	Active power	Total	t₂+3s to t₂+10s	n II	0.985
	29	Active power	Pos.	2103 10 21 103	p.u.	0.985
After the dip	30	Active power rising time	Pos.		s	0.152
> t ₂	31	Reactive power	Total	t₂+3s to t₂+10s	p.u.	0.060
	32	itodolive power	Pos.	2103 to 27103	p.u.	0.011
	33	Reactive power rising time	Pos.		s	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

	Page 201 of 243 Report No.: 613461			
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Page 202 of 243

0:13.00

0:12.00

0:12.25

Page 203 of 243

Page 204 of 243

Report No.: 6134610.50

Page 205 of 243 Report No.: 6134610.50

	Page 206 of 243 Report No.: 6134610			
		OVE-Richtlinie R 25		
Clause	Requirement - Test		Result - Remark	Verdict

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
General information	0	Test number				2.4
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:24:40
	3	Fault type (phase)				2-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.50
	5	Setting dip duration	860		ms	865
	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	865
	8	Fault duration in empty load test	Total		ms	868
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.234
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.250
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.001
	12	Current	Pos.	t ₁ -500ms to t ₁ -100ms	p.u.	0.211
	13	A of the second	Total	4.40-1-4		0.211
Before the dip < t ₁	14	Active power	Pos.	t ₁ -10s to t ₁	p.u.	0.211
	15		Total	t ₁ -10s to t ₁	p.u.	0.052
	16	Reactive power	Pos.			0.006
	17	Cosφ		t ₁ -10s to t ₁		0.970
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.767
	19		Phase 1	<i>t</i> ₁ +60ms	p.u.	0.044
	20	Line current	Phase 2			0.071
	21		Phase 3			0.069
During the dip t ₁ to t ₂	22		Phase 1	t₁+100ms	p.u.	0.044
1110 2	23	Line current	Phase 2			0.071
	24		Phase 3			0.069
	25	A otivo novor	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0
	26	- Active power	Pos.			
	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	1.001
After the dip > t ₂	28	A.C.	Total	₺+3s to ₺+10s	p.u.	0.208
	29	Active power	Pos.			0.208
	30	Active power rising time	Pos.		s	0.247
	31	D. anti an annua	Total	4 - 0 - 4 - 4 - 40 -	p.u.	0.053
	32	Reactive power	Pos.	£+3s to £+10s		0.006
	33	Reactive power rising time	Pos.		s	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 207 of 243

0.745981

-3,774e-4

-3.687e-4

0.049838

0.998324

0.183613

0.183992

0.052232

0.252343

0.183991

0.184360

2.395e-3

■ P_t [p.u.]

■ Q_t [p.u.]

U_fund_SYM+ [p.u.]

I_fund_P_SYM+ [p.u.]

Page 209 of 243 Report No.: 6134610.50

Page 211 of 243 Report No.: 61346					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
General information	0	Test number				3.1
	1	Date			yyyy.mm.dd	2022.9.20
	2	Time (start of test)			hh:mm:ss.f	14:43:13
	3	Fault type (phase)				3-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.85
	5	Setting dip duration	60000		ms	60003
om	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	60003
	8	Fault duration in empty load test	Total		ms	60009
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.15
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.15
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.000
	12	Current	Pos.	t ₁ -500ms to t ₁ -100ms	p.u.	1.005
	13	A -4i	Total	4 405 45 4		1.005
Before the dip < t ₁	14	Active power	Pos.	t ₁ -10s to t ₁	p.u.	1.005
	15		Total	t ₁ -10s to t ₁	p.u.	0.063
	16	Reactive power	Pos.			0.012
	17	Cosφ		t ₁ -10s to t ₁		0.998
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.85
	19		Phase 1	<i>t</i> ₁ +60ms	p.u.	1.030
	20	Line current	Phase 2			1.033
	21		Phase 3			1.029
During the dip t ₁ to t ₂	22		Phase 1	t₁+100ms	p.u.	1.030
1110 2	23	Line current	Phase 2			1.033
	24		Phase 3			1.029
	25	A otivo novor	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0.884
	26	- Active power	Pos.			0.884
	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	1.00
After the dip > t ₂	28	A.C.	Total	₺+3s to ₺+10s	p.u.	0.933
	29	Active power	Pos.			0.933
	30	Active power rising time	Pos.		s	
	31	D. anti an annua	Total	4 120 to 4 140-	p.u.	0.061
	32	Reactive power	Pos.	£+3s to £+10s		0.010
	33	Reactive power rising time	Pos.		s	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 212 of 243

0.047190

-0.015819

0.063009

Q_t [p.u.]

Page 214 of 243

Page 216 of 243 Report No.: 6134610						
OVE-Richtlinie R 25						
Clause	Requirement - Test		Result - Remark	Verdict		

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
General information	0	Test number				3.2
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:13:54
	3	Fault type (phase)				3-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.85
	5	Setting dip duration	60000		ms	60009
	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	60009
	8	Fault duration in empty load test	Total		ms	60009
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.150
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.149
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.001
	12	Current	Pos.	t ₁ -500ms to t ₁ -100ms	p.u.	0.209
	13	A otivo povor	Total	4 100 to 4		0.209
Before the dip < t ₁	14	Active power	Pos.	t ₁ -10s to t ₁	p.u.	0.209
	15	5	Total	t ₁ -10s to t ₁	p.u.	0.052
	16	Reactive power	Pos.			0.012
	17	Cosφ		t ₁ -10s to t ₁		0.970
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.851
	19		Phase 1	<i>t</i> ₁+60ms	p.u.	0.260
	20	Line current	Phase 2			0.260
	21		Phase 3			0.256
During the dip t ₁ to t ₂	22		Phase 1	<i>t</i> ₁+100ms	p.u.	0.249
1110 2	23	Line current	Phase 2			0.250
	24		Phase 3			0.246
	25	Active newer	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0.244
	26	- Active power	Pos.			0.244
After the dip > t ₂	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	1.00
	28	A otivo povor	Total	£+3s to £+10s	p.u.	0.209
	29	Active power	Pos.			0.209
	30	Active power rising time	Pos.		S	
	31	Departing names	Total	#120 to #1400	p.u.	0.052
	32	Reactive power	Pos.	£+3s to £+10s		0.012
	33	Reactive power rising time	Pos.		S	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 217 of 243 Report No.: 6134610.5					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

Page 218 of 243

4									
}									
H			+						
1									
#11::::::::				1					
1									
d									
H									
-									
H									
#									
 								+	
#									
0:14.450	0:14.500	A 0:14	4.550	0:14.	600	0:14	.650 0:1	4.700	0:14.
			A			В		Delta	
Time [s]			0:14.5265			0:14.6267	7	0.1002	
Time [s]	0								
			0:14.5265			0:14.6267	7	0.1002	
OU1_tRMS	[p.u.]		0:14.5265 1.000306			0:14.6267 0.845617	1	0.1002 -0.154689	
U1_tRMS	[p.u.] [p.u.]		0:14,5265 1.000306 1.000668			0:14.6267 0.845617 0.846164	7	0.1002 -0.154689 -0.154504	
U1_tRMS U2_tRMS U3_tRMS U_fund_S	[p.u.] [p.u.]		0:14.5265 1.000306 1.000668 1.000655			0:14.6267 0.845617 0.846164 0.846083	7 1 3	0.1002 -0.154689 -0.154504 -0.154571	
U1_tRMS U2_tRMS U3_tRMS U_fund_S	[p.u.] [p.u.] YM+ [p.u.] _SYM+ [p.u.]		0:14.5265 1.000306 1.000668 1.000655 0.996378			0:14.6267 0.845617 0.846164 0.846083 0.842429	7 1 3 9	0.1002 -0.154689 -0.154504 -0.154571 -0.153949	

Report No.: 6134610.50

Page 221 of 243 Report No.: 613461				
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				3.3
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:51:04
	3	Fault type (phase)				2-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.93
General information	5	Setting dip duration	60000		ms	60009
orrauorr	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	60009
	8	Fault duration in empty load test	Total		ms	60003
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.077
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.078
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.001
	12	Current	Pos.	<i>t</i> ₁ -500ms to <i>t</i> ₁ -100ms	p.u.	1.005
	13	Active newer	Total	t ₁ -10s to t ₁	p.u.	1.005
Before the dip < t ₁	14	Active power	Pos.	<i>t</i> 1-105 to <i>t</i> 1		1.005
	15	Reactive power	Total	t ₁ -10s to t ₁	p.u.	0.062
	16	Reactive power	Pos.	นา-105 เป นา		0.012
	17	Cosφ		t ₁ -10s to t ₁		0.998
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.919
	19		Phase 1	<i>t</i> ₁ +60ms	p.u.	1.046
	20	Line current	Phase 2			1.059
	21		Phase 3			1.059
During the dip t ₁ to t ₂	22		Phase 1	<i>t</i> ₁ +100ms	p.u.	1.036
	23	Line current	Phase 2			1.046
	24		Phase 3			1.043
	25	Active power	Total	t ₁ +100ms to t ₂ -20ms	p.u.	0.99
	26	Active power	Pos.	11 100110 to 12 20110		
	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	1.001
	28	Active power	Total	t ₂ +3s to t ₂ +10s	D.II	0.977
	29	Active power	Pos.	21001021100	p.u.	0.977
After the dip	30	Active power rising time	Pos.		S	
> t ₂	31	Reactive power	Total	t₂+3s to t₂+10s	p.u.	0.061
	32	Troubling power	Pos.	2100 10 21103	p.u.	0.011
	33	Reactive power rising time	Pos.		S	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 226 of 243 Report No.: 613461				
OVE-Richtlinie R 25				
Clause	Requirement - Test		Result - Remark	Verdict

Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value
	0	Test number				3.4
	1	Date			yyyy.mm.dd	2022.11.08
	2	Time (start of test)			hh:mm:ss.f	16:47:12
	3	Fault type (phase)				2-phase fault
	4	Setting voltage depth	Line to line		p.u.	0.93
General information	5	Setting dip duration	60000		ms	60007
om	6	Point of fault entry	Total		ms	0
	7	Point of fault clearance	Total		ms	60007
	8	Fault duration in empty load test	Total		ms	60002
	9	Voltage depth/height in empty	Total	t_1 +100ms to t_2 and		0.077
	10	load test	Pos.	t ₁ -10s to t ₁	p.u.	0.078
	11	Voltage	Line to neutral	t ₁ -10s to t ₁	p.u.	1.000
	12	Current	Pos.	t ₁ -500ms to t ₁ -100ms	p.u.	0.212
	13	A otivo povor	Total	4 100 to 4	p.u.	0.212
Before the dip < t ₁	14	Active power	Pos.	t ₁ -10s to t ₁		0.212
	15	Departing names	Total	t ₁ -10s to t ₁	p.u.	0.053
	16	Reactive power	Pos.	11-10S to 11		0.006
	17	Cosφ		t ₁ -10s to t ₁		0.970
	18	Voltage	Line to neutral	t ₁ +100ms to t ₂ -20ms	p.u.	0.919
	19		Phase 1	<i>t</i> ₁ +60ms	p.u.	0.232
	20	Line current	Phase 2			0.238
	21		Phase 3			0.238
During the dip t ₁ to t ₂	22		Phase 1		p.u.	0.228
1.12 2	23	Line current	Phase 2	<i>t</i> ₁ +100ms		0.233
	24		Phase 3			0.233
	25	Active power	Total	t₁+100ms to t₂-20ms	p.u.	0.209
	26	Active power	Pos.	4+1001115 to 12-201115		0.208
	27	Voltage	Line to neutral	t ₂ +3s to t ₂ +10s	p.u.	1.00
	28	Active power	Total	5130 to 51100		0.210
	29	Active power	Pos.	£+3s to £+10s	p.u.	0.210
After the dip	30	Active power rising time	Pos.		s	
> t ₂	31	Peactive nower	Total	£+3s to £+10s	n	0.053
	32	Reactive power	Pos.	2733 IU 27 IUS	p.u.	0.006
	33	Reactive power rising time	Pos.		S	N/A
	34	PGU does not disconnect from grid till 60s after fault		t ₂ to t ₂ +60s	Yes / No	Yes

Page 227 of 243 Report No.: 6134610.5					
OVE-Richtlinie R 25					
Clause	Requirement - Test		Result - Remark	Verdict	

Page 229 of 243

243 Report No.: 6134610.50

Appendix: Photos

LCD board Solder Side

Communication board Solder Side

The main power board Component Side

The main power board Solder Side

PV input interface board Component Side

PV input interface board Solder Side

PV input interface board Component Side

PV input interface board Solder Side

--- End of test report---